Spaces:
Running
Running
admin
commited on
Commit
·
6e103ce
1
Parent(s):
47a1023
merge try
Browse files
app.py
CHANGED
@@ -44,63 +44,48 @@ def circular_padding(y: np.ndarray, sr: int, dur=3):
|
|
44 |
|
45 |
|
46 |
def wav2mel(audio_path: str):
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
)
|
60 |
-
plt.close()
|
61 |
-
|
62 |
-
except Exception as e:
|
63 |
-
print(f"Error converting {audio_path} : {e}")
|
64 |
|
65 |
|
66 |
def wav2cqt(audio_path: str):
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
)
|
80 |
-
plt.close()
|
81 |
-
|
82 |
-
except Exception as e:
|
83 |
-
print(f"Error converting {audio_path} : {e}")
|
84 |
|
85 |
|
86 |
def wav2chroma(audio_path: str):
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
)
|
100 |
-
plt.close()
|
101 |
-
|
102 |
-
except Exception as e:
|
103 |
-
print(f"Error converting {audio_path} : {e}")
|
104 |
|
105 |
|
106 |
def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
|
@@ -110,13 +95,15 @@ def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
|
|
110 |
if not wav_path:
|
111 |
return None, "Please input an audio!"
|
112 |
|
|
|
|
|
113 |
try:
|
114 |
model = EvalNet(log_name, len(TRANSLATE)).model
|
|
|
|
|
115 |
except Exception as e:
|
116 |
return None, f"{e}"
|
117 |
|
118 |
-
spec = log_name.split("_")[-3]
|
119 |
-
eval("wav2%s" % spec)(wav_path)
|
120 |
input = embed_img(f"{folder_path}/output.jpg")
|
121 |
output: torch.Tensor = model(input)
|
122 |
pred_id = torch.max(output.data, 1)[1]
|
|
|
44 |
|
45 |
|
46 |
def wav2mel(audio_path: str):
|
47 |
+
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
|
48 |
+
y = circular_padding(y, sr)
|
49 |
+
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
|
50 |
+
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
|
51 |
+
librosa.display.specshow(log_mel_spec)
|
52 |
+
plt.axis("off")
|
53 |
+
plt.savefig(
|
54 |
+
f"{TEMP_DIR}/output.jpg",
|
55 |
+
bbox_inches="tight",
|
56 |
+
pad_inches=0.0,
|
57 |
+
)
|
58 |
+
plt.close()
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
def wav2cqt(audio_path: str):
|
62 |
+
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
|
63 |
+
y = circular_padding(y, sr)
|
64 |
+
cqt_spec = librosa.cqt(y=y, sr=sr)
|
65 |
+
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
|
66 |
+
librosa.display.specshow(log_cqt_spec)
|
67 |
+
plt.axis("off")
|
68 |
+
plt.savefig(
|
69 |
+
f"{TEMP_DIR}/output.jpg",
|
70 |
+
bbox_inches="tight",
|
71 |
+
pad_inches=0.0,
|
72 |
+
)
|
73 |
+
plt.close()
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
|
76 |
def wav2chroma(audio_path: str):
|
77 |
+
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
|
78 |
+
y = circular_padding(y, sr)
|
79 |
+
chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
|
80 |
+
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
|
81 |
+
librosa.display.specshow(log_chroma_spec)
|
82 |
+
plt.axis("off")
|
83 |
+
plt.savefig(
|
84 |
+
f"{TEMP_DIR}/output.jpg",
|
85 |
+
bbox_inches="tight",
|
86 |
+
pad_inches=0.0,
|
87 |
+
)
|
88 |
+
plt.close()
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
|
91 |
def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
|
|
|
95 |
if not wav_path:
|
96 |
return None, "Please input an audio!"
|
97 |
|
98 |
+
spec = log_name.split("_")[-3]
|
99 |
+
os.makedirs(folder_path, exist_ok=True)
|
100 |
try:
|
101 |
model = EvalNet(log_name, len(TRANSLATE)).model
|
102 |
+
eval("wav2%s" % spec)(wav_path)
|
103 |
+
|
104 |
except Exception as e:
|
105 |
return None, f"{e}"
|
106 |
|
|
|
|
|
107 |
input = embed_img(f"{folder_path}/output.jpg")
|
108 |
output: torch.Tensor = model(input)
|
109 |
pred_id = torch.max(output.data, 1)[1]
|