File size: 6,437 Bytes
58ca3ce
 
 
 
 
 
 
 
 
 
 
 
 
e4724a3
8dba7fb
e4724a3
 
 
 
 
 
 
 
 
58ca3ce
 
 
 
 
 
 
 
 
d323e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58ca3ce
 
 
d323e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58ca3ce
 
 
d323e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58ca3ce
 
 
 
 
 
 
 
 
 
 
 
 
 
e4724a3
 
 
 
 
 
58ca3ce
e4724a3
 
58ca3ce
e4724a3
 
d323e45
 
e4724a3
 
 
 
 
 
 
 
 
 
 
 
 
d323e45
 
e4724a3
58ca3ce
e4724a3
58ca3ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4724a3
58ca3ce
 
 
2ac0792
58ca3ce
 
 
e4724a3
58ca3ce
e4724a3
 
58ca3ce
 
e4724a3
 
 
58ca3ce
 
 
 
e4724a3
58ca3ce
 
70ebad0
e4724a3
 
 
 
 
 
 
 
 
 
 
 
 
 
70ebad0
 
58ca3ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import sys
import torch
import shutil
import librosa
import warnings
import subprocess
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
from PIL import Image
from collections import Counter
from model import EvalNet
from utils import (
    get_modelist,
    find_mp3_files,
    download,
    _L,
    CACHE_DIR,
    TRANSLATE,
    CLASSES,
)


def most_common_element(input_list):
    counter = Counter(input_list)
    mce, _ = counter.most_common(1)[0]
    return mce


def mp3_to_mel(audio_path: str, width=11.4):
    y, sr = librosa.load(audio_path)
    mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
    log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
    dur = librosa.get_duration(y=y, sr=sr)
    total_frames = log_mel_spec.shape[1]
    step = int(width * total_frames / dur)
    count = int(total_frames / step)
    begin = int(0.5 * (total_frames - count * step))
    end = begin + step * count
    for i in range(begin, end, step):
        librosa.display.specshow(log_mel_spec[:, i : i + step])
        plt.axis("off")
        plt.savefig(
            f"{CACHE_DIR}/mel_{round(dur, 2)}_{i}.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()


def mp3_to_cqt(audio_path: str, width=11.4):
    y, sr = librosa.load(audio_path)
    cqt_spec = librosa.cqt(y=y, sr=sr)
    log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
    dur = librosa.get_duration(y=y, sr=sr)
    total_frames = log_cqt_spec.shape[1]
    step = int(width * total_frames / dur)
    count = int(total_frames / step)
    begin = int(0.5 * (total_frames - count * step))
    end = begin + step * count
    for i in range(begin, end, step):
        librosa.display.specshow(log_cqt_spec[:, i : i + step])
        plt.axis("off")
        plt.savefig(
            f"{CACHE_DIR}/cqt_{round(dur, 2)}_{i}.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()


def mp3_to_chroma(audio_path: str, width=11.4):
    y, sr = librosa.load(audio_path)
    chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
    log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
    dur = librosa.get_duration(y=y, sr=sr)
    total_frames = log_chroma_spec.shape[1]
    step = int(width * total_frames / dur)
    count = int(total_frames / step)
    begin = int(0.5 * (total_frames - count * step))
    end = begin + step * count
    for i in range(begin, end, step):
        librosa.display.specshow(log_chroma_spec[:, i : i + step])
        plt.axis("off")
        plt.savefig(
            f"{CACHE_DIR}/chroma_{round(dur, 2)}_{i}.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()


def embed_img(img_path, input_size=224):
    transform = transforms.Compose(
        [
            transforms.Resize([input_size, input_size]),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
        ]
    )
    img = Image.open(img_path).convert("RGB")
    return transform(img).unsqueeze(0)


def infer(mp3_path, log_name: str, folder_path=CACHE_DIR):
    status = "Success"
    filename = result = None
    try:
        if os.path.exists(folder_path):
            shutil.rmtree(folder_path)

        if not mp3_path:
            raise ValueError("请输入音频!")

        spec = log_name.split("_")[-1]
        os.makedirs(folder_path, exist_ok=True)
        network = EvalNet(log_name)
        eval("mp3_to_%s" % spec)(mp3_path)
        outputs = []
        all_files = os.listdir(folder_path)
        for file_name in all_files:
            if file_name.lower().endswith(".jpg"):
                file_path = os.path.join(folder_path, file_name)
                input = embed_img(file_path)
                output: torch.Tensor = network.model(input)
                pred_id = torch.max(output.data, 1)[1]
                outputs.append(int(pred_id))

        max_count_item = most_common_element(outputs)
        filename = os.path.basename(mp3_path)
        result = TRANSLATE[CLASSES[max_count_item]]

    except Exception as e:
        status = f"{e}"

    return status, filename, result


if __name__ == "__main__":
    warnings.filterwarnings("ignore")
    ffmpeg = "ffmpeg-release-amd64-static"
    if sys.platform.startswith("linux"):
        if not os.path.exists(f"./{ffmpeg}.tar.xz"):
            download(
                f"https://www.modelscope.cn/studio/ccmusic-database/music_genre/resolve/master/{ffmpeg}.tar.xz"
            )

        folder_path = f"{os.getcwd()}/{ffmpeg}"
        if not os.path.exists(folder_path):
            subprocess.call(f"tar -xvf {ffmpeg}.tar.xz", shell=True)

        os.environ["PATH"] = f"{folder_path}:{os.environ.get('PATH', '')}"

    models = get_modelist(assign_model="vgg19_bn_cqt")
    examples = []
    example_mp3s = find_mp3_files()
    for mp3 in example_mp3s:
        examples.append([mp3, models[0]])

    with gr.Blocks() as demo:
        gr.Interface(
            fn=infer,
            inputs=[
                gr.Audio(label=_L("上传 MP3 音频"), type="filepath"),
                gr.Dropdown(choices=models, label=_L("选择模型"), value=models[0]),
            ],
            outputs=[
                gr.Textbox(label=_L("状态栏"), show_copy_button=True),
                gr.Textbox(label=_L("音频文件名"), show_copy_button=True),
                gr.Textbox(label=_L("流派识别"), show_copy_button=True),
            ],
            examples=examples,
            cache_examples=False,
            allow_flagging="never",
            title=_L("建议录音时长保持在 15s 以内, 过长会影响识别效率"),
        )

        gr.Markdown(
            f"# {_L('引用')}"
            + """
            ```bibtex
            @dataset{zhaorui_liu_2021_5676893,
                author    = {Zhaorui Liu and Zijin Li},
                title     = {Music Data Sharing Platform for Computational Musicology Research (CCMUSIC DATASET)},
                month     = nov,
                year      = 2021,
                publisher = {Zenodo},
                version   = {1.1},
                doi       = {10.5281/zenodo.5676893},
                url       = {https://doi.org/10.5281/zenodo.5676893}
            }
            ```"""
        )

    demo.launch()