Spaces:
Running
Running
File size: 7,726 Bytes
58ca3ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import os
import sys
import torch
import random
import shutil
import librosa
import warnings
import subprocess
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
from utils import get_modelist, find_mp3_files, download
from collections import Counter
from model import EvalNet
from PIL import Image
TRANSLATE = {
"Symphony": "交响乐 Symphony",
"Opera": "戏曲 Opera",
"Solo": "独奏 Solo",
"Chamber": "室内乐 Chamber",
"Pop_vocal_ballad": "芭乐 Pop vocal ballad",
"Adult_contemporary": "成人时代 Adult contemporary",
"Teen_pop": "青少年流行 Teen pop",
"Contemporary_dance_pop": "当代流行舞曲 Contemporary dance pop",
"Dance_pop": "流行舞曲 Dance pop",
"Classic_indie_pop": "经典独立流行 Classic indie pop",
"Chamber_cabaret_and_art_pop": "室内卡巴莱与艺术流行乐 Chamber cabaret & art pop",
"Soul_or_r_and_b": "灵魂乐或节奏布鲁斯 Soul / R&B",
"Adult_alternative_rock": "成人另类摇滚 Adult alternative rock",
"Uplifting_anthemic_rock": "迷幻民族摇滚 Uplifting anthemic rock",
"Soft_rock": "慢摇滚 Soft rock",
"Acoustic_pop": "原声流行 Acoustic pop",
}
CLASSES = list(TRANSLATE.keys())
def most_common_element(input_list):
counter = Counter(input_list)
mce, _ = counter.most_common(1)[0]
return mce
def mp3_to_mel(audio_path: str, width=11.4):
os.makedirs("./flagged", exist_ok=True)
try:
y, sr = librosa.load(audio_path)
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
dur = librosa.get_duration(y=y, sr=sr)
total_frames = log_mel_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_mel_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"./flagged/mel_{round(dur, 2)}_{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def mp3_to_cqt(audio_path: str, width=11.4):
os.makedirs("./flagged", exist_ok=True)
try:
y, sr = librosa.load(audio_path)
cqt_spec = librosa.cqt(y=y, sr=sr)
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
dur = librosa.get_duration(y=y, sr=sr)
total_frames = log_cqt_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_cqt_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"./flagged/cqt_{round(dur, 2)}_{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def mp3_to_chroma(audio_path: str, width=11.4):
os.makedirs("./flagged", exist_ok=True)
try:
y, sr = librosa.load(audio_path)
chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
dur = librosa.get_duration(y=y, sr=sr)
total_frames = log_chroma_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_chroma_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"./flagged/chroma_{round(dur, 2)}_{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def embed_img(img_path, input_size=224):
transform = transforms.Compose(
[
transforms.Resize([input_size, input_size]),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
img = Image.open(img_path).convert("RGB")
return transform(img).unsqueeze(0)
def inference(mp3_path, log_name: str, folder_path="./flagged"):
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
if not mp3_path:
return None, "请输入音频 Please input an audio!"
network = EvalNet(log_name)
spec = log_name.split("_")[-1]
eval("mp3_to_%s" % spec)(mp3_path)
outputs = []
all_files = os.listdir(folder_path)
for file_name in all_files:
if file_name.lower().endswith(".jpg"):
file_path = os.path.join(folder_path, file_name)
input = embed_img(file_path)
output: torch.Tensor = network.model(input)
pred_id = torch.max(output.data, 1)[1]
outputs.append(int(pred_id))
max_count_item = most_common_element(outputs)
shutil.rmtree(folder_path)
return os.path.basename(mp3_path), TRANSLATE[CLASSES[max_count_item]]
if __name__ == "__main__":
warnings.filterwarnings("ignore")
ffmpeg = "ffmpeg-release-amd64-static"
if sys.platform.startswith("linux"):
if not os.path.exists(f"./{ffmpeg}.tar.xz"):
download(
f"https://www.modelscope.cn/studio/ccmusic-database/music_genre/resolve/master/{ffmpeg}.tar.xz"
)
folder_path = f"{os.getcwd()}/{ffmpeg}"
if not os.path.exists(folder_path):
subprocess.call(f"tar -xvf {ffmpeg}.tar.xz", shell=True)
os.environ["PATH"] = f"{folder_path}:{os.environ.get('PATH', '')}"
models = get_modelist()
examples = []
example_mp3s = find_mp3_files()
model_num = len(models)
for mp3 in example_mp3s:
examples.append([mp3, models[random.randint(0, model_num - 1)]])
with gr.Blocks() as demo:
gr.Interface(
fn=inference,
inputs=[
gr.Audio(label="上传MP3音频 Upload MP3", type="filepath"),
gr.Dropdown(
choices=models, label="选择模型 Select a model", value=models[6]
),
],
outputs=[
gr.Textbox(label="音频文件名 Audio filename", show_copy_button=True),
gr.Textbox(label="流派识别 Genre recognition", show_copy_button=True),
],
examples=examples,
cache_examples=False,
allow_flagging="never",
title="建议录音时长保持在 15s 以内, 过长会影响识别效率<br>It is recommended to keep the duration of recording within 15s, too long will affect the recognition efficiency.",
)
gr.Markdown(
"""
# 引用 Cite
```bibtex
@dataset{zhaorui_liu_2021_5676893,
author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
title = {CCMusic: an Open and Diverse Database for Chinese and General Music Information Retrieval Research},
month = {mar},
year = {2024},
publisher = {HuggingFace},
version = {1.2},
url = {https://huggingface.co/ccmusic-database}
}
```"""
)
demo.launch()
|