File size: 4,181 Bytes
ef94b92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2def64b
 
 
 
 
 
 
 
 
 
 
 
ef94b92
 
 
 
 
 
 
 
 
2def64b
ef94b92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2def64b
ef94b92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2def64b
ef94b92
 
 
 
2def64b
ef94b92
 
 
 
 
 
 
 
 
 
 
 
 
 
2def64b
ef94b92
 
 
 
 
2def64b
ef94b92
 
 
 
 
2def64b
ef94b92
2def64b
ef94b92
2def64b
ef94b92
 
 
 
 
 
2def64b
ef94b92
 
 
 
2def64b
ef94b92
0d13f94
8389616
55da42a
0d13f94
a048747
0d13f94
 
ef94b92
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import torch
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
from collections import Counter
from PIL import Image
from tqdm import tqdm
from model import net, MODEL_DIR


MODEL = net()
TRANS = {
    "PearlRiver": "Pearl River",
    "YoungChang": "YOUNG CHANG",
    "Steinway-T": "STEINWAY Theater",
    "Hsinghai": "HSINGHAI",
    "Kawai": "KAWAI",
    "Steinway": "STEINWAY",
    "Kawai-G": "KAWAI Grand",
    "Yamaha": "YAMAHA",
}
CLASSES = list(TRANS.keys())
CACHE_DIR = "./__pycache__/tmp"


def most_common_element(input_list):
    counter = Counter(input_list)
    mce, _ = counter.most_common(1)[0]
    return mce


def wav_to_mel(audio_path: str, width=0.18):
    os.makedirs(CACHE_DIR, exist_ok=True)
    try:
        y, sr = librosa.load(audio_path, sr=48000)
        non_silent = y
        mel_spec = librosa.feature.melspectrogram(y=non_silent, sr=sr)
        log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
        dur = librosa.get_duration(y=non_silent, sr=sr)
        total_frames = log_mel_spec.shape[1]
        step = int(width * total_frames / dur)
        count = int(total_frames / step)
        begin = int(0.5 * (total_frames - count * step))
        end = begin + step * count
        for i in tqdm(range(begin, end, step), desc="Converting wav to jpgs..."):
            librosa.display.specshow(log_mel_spec[:, i : i + step])
            plt.axis("off")
            plt.savefig(
                f"{CACHE_DIR}/{os.path.basename(audio_path)[:-4]}_{i}.jpg",
                bbox_inches="tight",
                pad_inches=0.0,
            )
            plt.close()

    except Exception as e:
        print(f"Error converting {audio_path} : {e}")


def embed_img(img_path, input_size=224):
    transform = transforms.Compose(
        [
            transforms.Resize([input_size, input_size]),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
        ]
    )
    img = Image.open(img_path).convert("RGB")
    return transform(img).unsqueeze(0)


def inference(wav_path, folder_path=CACHE_DIR):
    if os.path.exists(folder_path):
        shutil.rmtree(folder_path)

    if not wav_path:
        return None, "Please input an audio!"

    wav_to_mel(wav_path)
    outputs = []
    all_files = os.listdir(folder_path)
    for file_name in all_files:
        if file_name.lower().endswith(".jpg"):
            file_path = os.path.join(folder_path, file_name)
            input = embed_img(file_path)
            output: torch.Tensor = MODEL(input)
            pred_id = torch.max(output.data, 1)[1]
            outputs.append(pred_id)

    max_count_item = most_common_element(outputs)
    shutil.rmtree(folder_path)
    return os.path.basename(wav_path), TRANS[CLASSES[max_count_item]]


if __name__ == "__main__":
    warnings.filterwarnings("ignore")
    example_wavs = []
    for cls in CLASSES:
        example_wavs.append(f"{MODEL_DIR}/examples/{cls}.wav")

    with gr.Blocks() as demo:
        gr.Interface(
            fn=inference,
            inputs=gr.Audio(type="filepath", label="Upload a piano recording"),
            outputs=[
                gr.Textbox(label="Audio filename", show_copy_button=True),
                gr.Textbox(
                    label="Piano classification result",
                    show_copy_button=True,
                ),
            ],
            examples=example_wavs,
            cache_examples=False,
            allow_flagging="never",
            title="It is recommended to keep the duration of recording around 3s, too long will affect the recognition efficiency.",
        )

        gr.Markdown(
            """
# Cite
```bibtex
@inproceedings{zhou2023holistic,
  title        = {A Holistic Evaluation of Piano Sound Quality},
  author       = {Monan Zhou and Shangda Wu and Shaohua Ji and Zijin Li and Wei Li},
  booktitle    = {National Conference on Sound and Music Technology},
  pages        = {3--17},
  year         = {2023},
  organization = {Springer}
}
```"""
        )

    demo.launch()