import os import torch import shutil import librosa import warnings import numpy as np import gradio as gr import librosa.display import matplotlib.pyplot as plt import torchvision.transforms as transforms from collections import Counter from PIL import Image from tqdm import tqdm from model import net, _L, MODEL_DIR, TMP_DIR def most_common_element(input_list): counter = Counter(input_list) mce, _ = counter.most_common(1)[0] return mce def wav_to_mel(audio_path: str, width=0.18): os.makedirs(TMP_DIR, exist_ok=True) y, sr = librosa.load(audio_path, sr=48000) non_silent = y mel_spec = librosa.feature.melspectrogram(y=non_silent, sr=sr) log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max) dur = librosa.get_duration(y=non_silent, sr=sr) total_frames = log_mel_spec.shape[1] step = int(width * total_frames / dur) count = int(total_frames / step) begin = int(0.5 * (total_frames - count * step)) end = begin + step * count for i in tqdm(range(begin, end, step), desc="转换 wav 至 jpgs..."): librosa.display.specshow(log_mel_spec[:, i : i + step]) plt.axis("off") plt.savefig( f"{TMP_DIR}/{os.path.basename(audio_path)[:-4]}_{i}.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() def embed_img(img_path, input_size=224): transform = transforms.Compose( [ transforms.Resize([input_size, input_size]), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) img = Image.open(img_path).convert("RGB") return transform(img).unsqueeze(0) def infer(wav_path, folder_path=TMP_DIR): status = "Success" filename = result = None try: if os.path.exists(folder_path): shutil.rmtree(folder_path) if not wav_path: raise ValueError("请输入音频!") wav_to_mel(wav_path) outputs = [] all_files = os.listdir(folder_path) for file_name in all_files: if file_name.lower().endswith(".jpg"): file_path = os.path.join(folder_path, file_name) input = embed_img(file_path) output: torch.Tensor = net()(input) pred_id = torch.max(output.data, 1)[1] outputs.append(pred_id) max_count_item = most_common_element(outputs) filename = os.path.basename(wav_path) result = translate[classes[max_count_item]] except Exception as e: status = f"{e}" return status, filename, result if __name__ == "__main__": warnings.filterwarnings("ignore") translate = { "PearlRiver": _L("珠江"), "YoungChang": _L("英昌"), "Steinway-T": _L("施坦威剧场"), "Hsinghai": _L("星海"), "Kawai": _L("卡瓦依"), "Steinway": _L("施坦威"), "Kawai-G": _L("卡瓦依三角"), "Yamaha": _L("雅马哈"), } classes = list(translate.keys()) example_wavs = [] for cls in classes: example_wavs.append(f"{MODEL_DIR}/examples/{cls}.wav") with gr.Blocks() as demo: gr.Interface( fn=infer, inputs=gr.Audio(type="filepath", label=_L("上传钢琴录音")), outputs=[ gr.Textbox(label=_L("状态栏"), show_copy_button=True), gr.Textbox(label=_L("音频文件名"), show_copy_button=True), gr.Textbox(label=_L("钢琴分类结果"), show_copy_button=True), ], examples=example_wavs, cache_examples=False, allow_flagging="never", title=_L("建议录音时长保持在 3s 左右, 过长会影响识别效率"), ) gr.Markdown( f"# {_L('引用')}" + """ ```bibtex @inproceedings{zhou2023holistic, title = {A Holistic Evaluation of Piano Sound Quality}, author = {Monan Zhou and Shangda Wu and Shaohua Ji and Zijin Li and Wei Li}, booktitle = {National Conference on Sound and Music Technology}, pages = {3--17}, year = {2023}, organization = {Springer} } ```""" ) demo.launch()