EmotionPlaylist / app.py
ccolas's picture
Update app.py
cda8a3a
raw
history blame
22.1 kB
import requests
import streamlit
from PIL import Image
from utils import *
from app_utils import *
import time
from spotipy.oauth2 import SpotifyClientCredentials
debug = False
dir_path = os.path.dirname(os.path.realpath(__file__))
st.set_page_config(
page_title="EmotionalPlaylist",
page_icon="🎧",
)
st.title('Emotional Playlists')
def log_to_spotify():
st.subheader("Step 1: Connect to your Spotify app")
st.markdown("Log into your Spotify account to let the app create the custom playlist.")
if 'login' not in st.session_state or debug:
if debug:
client_credentials_manager = SpotifyClientCredentials()
sp = spotipy.Spotify(client_credentials_manager=client_credentials_manager)
user_id = None
auth_manager = None
else:
sp, user_id, auth_manager = new_get_client(session=st.session_state)
if sp != None:
legit_genres = sp.recommendation_genre_seeds()['genres']
st.session_state['login'] = (sp, user_id, legit_genres, auth_manager)
st.success('You are logged in.')
else:
legit_genres = None
else:
sp, user_id, legit_genres, auth_manager = st.session_state['login']
st.success('You are logged in.')
return sp, user_id, legit_genres, auth_manager
@st.cache(suppress_st_warning=True)
def get_user_playlists(users_links):
global sp
# Scanning users
n_playlists = 0
all_uris, all_names = [], []
if users_links != "":
try:
print(users_links)
user_ids = extract_uris_from_links(users_links, url_type='user')
print(user_ids)
all_uris, all_names = get_all_playlists_uris_from_users(sp, user_ids)
n_playlists = len(all_uris)
except:
st.warning('Please enter a valid list of user names (one url per line)')
return all_uris, all_names, n_playlists
def get_filtered_user_playlists(user_links):
global sp
st.spinner(text="Scanning users..")
all_uris, all_names, n_playlists = get_user_playlists(user_links)
if n_playlists <= 1:
return all_uris
else:
with st.expander("##### Select user playlists (default all)"):
# let the user uncheck playlists
st.markdown("Check boxes to select playlists from the selected users."
"Note: to check all, first uncheck all (bug).")
columns = st.columns(np.ones(5))
with columns[1]:
check_all_playlists = st.button('Check all')
with columns[3]:
uncheck_all_playlists = st.button('Uncheck all')
if 'checkboxes' not in st.session_state.keys():
st.session_state['checkboxes_playlists'] = [True] * n_playlists
empty_checkboxes = wall_of_checkboxes(all_names, max_width=5)
if check_all_playlists:
st.session_state['checkboxes_playlists'] = [True] * n_playlists
if uncheck_all_playlists:
st.session_state['checkboxes_playlists'] = [False] * n_playlists
for i_emc, emc in enumerate(empty_checkboxes):
st.session_state['checkboxes_playlists'][i_emc] = emc.checkbox(all_names[i_emc], value=st.session_state['checkboxes_playlists'][i_emc])
filter_playlist = centered_button(st.button, 'Update user playlists', n_columns=5)
if filter_playlist:
return list(np.array(all_uris)[np.where(st.session_state['checkboxes_playlists'])])
else:
return []
@st.cache(suppress_st_warning=True)
def get_non_user_playlists(playlist_links):
# Scanning playlists
new_playlist_uris = []
if playlist_links != "":
st.spinner(text="Scanning playlists..")
try:
new_playlist_uris = extract_uris_from_links(playlist_links, url_type='playlist')
except:
st.warning('Please enter a valid list of playlists (one url per line)')
return new_playlist_uris
@st.cache
def extract_tracks(playlist_uris):
global sp
# extracting tracks
data_tracks = get_all_tracks_from_playlists(sp, playlist_uris, verbose=True)
return data_tracks
@st.cache
def extract_audio_features(data_tracks, legit_genres):
# Extract audio features
all_tracks_uris = np.array(list(data_tracks.keys()))
all_audio_features = [data_tracks[uri]['track']['audio_features'] for uri in all_tracks_uris]
valid_indexes = np.array([i for i in range(len(all_tracks_uris)) if all_audio_features[i] is not None])
all_tracks_uris = all_tracks_uris[valid_indexes]
all_audio_features = np.array(all_audio_features)[valid_indexes]
all_tracks_audio_features = dict(zip(relevant_audio_features, [[audio_f[k] for audio_f in all_audio_features] for k in relevant_audio_features]))
all_tracks_genres = []
indexes_by_genre = dict()
for index, uri in enumerate(all_tracks_uris):
track = data_tracks[uri]
track_genres = track['track']['genres']
all_tracks_genres.append([])
for glabel in track_genres:
legit_genre = find_legit_genre(glabel, legit_genres)
if legit_genre in indexes_by_genre.keys():
indexes_by_genre[legit_genre].append(index)
else:
indexes_by_genre[legit_genre] = [index]
all_tracks_genres[-1].append(legit_genre)
all_tracks_genres[-1] = sorted(set(all_tracks_genres[-1]))
genres_labels = sorted(indexes_by_genre.keys())
all_tracks_genres = np.array(all_tracks_genres)
return all_tracks_uris, all_tracks_audio_features, all_tracks_genres, indexes_by_genre, genres_labels
# st.session_state['music_extracted'] = dict(all_tracks_uris=all_tracks_uris,
# all_tracks_audio_features=all_tracks_audio_features,
# genres=genres,
# genres_labels=genres_labels)
def select_songs(legit_genres):
global sp
st.subheader("Step 2: Select candidate songs")
st.markdown("This can be done in two ways: \n"
"1. Get songs from a list of users (and their playlists)\n"
"2. Get songs from a list of playlists.\n"
"For this you'll need to collect user and/or playlist urls by clicking on \"Share\" and \"Copy link\" in the Spotify app.")
users_playlists = "Add a list of user urls, one per line (optional)"
users_links = st.text_area(users_playlists, value="")
label_playlists = "Add a list of playlists urls, one per line (optional)"
playlist_links = st.text_area(label_playlists, value="https://open.spotify.com/playlist/1H7a4q8JZArMQiidRy6qon\nhttps://open.spotify.com/playlist/6wbaZqht4w6CMv3od5taax?si=5c6ebe13fdd049b6")
extract_button = centered_button(st.button, 'Extract music', n_columns=5)
all_tracks_uris, all_tracks_audio_features, all_tracks_genres, indexes_by_genre, genres_labels = [None] * 5
updated_sources = False
if extract_button or debug or 'extract_button' in st.session_state.keys():
if extract_button:
updated_sources = True
st.session_state['extract_button'] = True
# check the user input music sourc
if playlist_links == "" and users_links == "":
st.warning('Please enter at least one source of music.')
else:
st.spinner(text="Scanning music sources..")
playlist_uris = []
init_time = time.time()
init_time_tot = init_time
user_playlists = get_filtered_user_playlists(users_links)
playlist_uris += user_playlists
print(f'1. user playlist: {time.time() - init_time:.2f}')
init_time = time.time()
new_playlist_uris = get_non_user_playlists(playlist_links)
playlist_uris += new_playlist_uris
n_users = len(users_links.split('\n'))
st.success(f'{len(playlist_uris)} new playlists added from {n_users} users.')
print(f'2. non user playlist: {time.time() - init_time:.2f}')
init_time = time.time()
if str(playlist_uris) in st.session_state.keys():
data_tracks = st.session_state[str(playlist_uris)]
else:
data_tracks = extract_tracks(playlist_uris)
st.session_state[str(playlist_uris)] = data_tracks
print(f'3. track extraction: {time.time() - init_time:.2f}')
init_time = time.time()
if len(data_tracks.keys()) < 10:
st.warning('Please select more music sources.')
else:
all_tracks_uris, all_tracks_audio_features, all_tracks_genres, indexes_by_genre, genres_labels = extract_audio_features(data_tracks, legit_genres)
print(f'4. audio feature extraction: {time.time() - init_time:.2f}')
print(f'\t total extraction: {time.time() - init_time_tot:.2f}')
st.success(f'{len(data_tracks.keys())} tracks found!')
return all_tracks_uris, all_tracks_audio_features, all_tracks_genres, indexes_by_genre, genres_labels, updated_sources
def customize_widgets(genres_labels, updated_sources):
st.subheader("Step 3: Customize it!")
st.markdown('##### Which genres?')
expanded = True if 'expanded_genres' in st.session_state else False
with st.expander("Unroll to select (default all)", expanded=expanded):
st.session_state['expanded_genres'] = True
st.markdown("Check boxes to select genres. Note: to check all, first uncheck all (bug).")
columns = st.columns(np.ones(5))
with columns[1]:
check_all = st.button('Check all')
with columns[3]:
uncheck_all = st.button('Uncheck all')
if 'checkboxes' not in st.session_state.keys() or updated_sources:
st.session_state['checkboxes'] = [True] * len(genres_labels)
updated_sources = False
empty_checkboxes = wall_of_checkboxes(genres_labels, max_width=5)
if check_all:
st.session_state['checkboxes'] = [True] * len(genres_labels)
if uncheck_all:
st.session_state['checkboxes'] = [False] * len(genres_labels)
for i_emc, emc in enumerate(empty_checkboxes):
st.session_state['checkboxes'][i_emc] = emc.checkbox(genres_labels[i_emc], value=st.session_state['checkboxes'][i_emc])
st.markdown("##### What's the mood?")
valence = st.slider('Valence (0 negative, 100 positive)', min_value=0, max_value=100, value=60, step=1) / 100
energy = st.slider('Energy (0 low, 100 high)', min_value=0, max_value=100, value=60, step=1) / 100
danceability = st.slider('Danceability (0 low, 100 high)', min_value=0, max_value=100, value=60, step=1) / 100
target_mood = np.array([valence, energy, danceability]).reshape(1, 3)
streamlit.markdown('##### Shall we explore?')
streamlit.write("Set the strength of music exploration:\n"
"* 0%: all songs are selected from the music sources\n"
"* 100%: all songs are new.")
exploration = st.slider('Exploration (0%, 100%)', min_value=0, max_value=100, value=50, step=1) / 100
return target_mood, exploration
@st.cache
def filter_songs_by_genre(checkboxes, genres_labels, indexes_by_genre):
# filter songs by genres
selected_labels = [genres_labels[i] for i in range(len(genres_labels)) if checkboxes[i]]
genre_selected_indexes = []
for label in selected_labels:
genre_selected_indexes += indexes_by_genre[label]
genre_selected_indexes = np.array(sorted(set(genre_selected_indexes)))
return genre_selected_indexes
@st.cache
def find_best_songs_for_mood(all_tracks_audio_features, genre_selected_indexes, target_mood):
candidate_moods = np.array([np.array(all_tracks_audio_features[feature])[genre_selected_indexes] for feature in ['valence', 'energy', 'danceability']]).T
distances = np.sqrt(((candidate_moods - target_mood) ** 2).sum(axis=1))
min_dist_indexes = np.argsort(distances)
n_candidates = distances.shape[0]
return min_dist_indexes, n_candidates
@st.cache
def run_exploration(selected_tracks_uris, selected_tracks_genres, playlist_length, exploration, all_tracks_uris, target_mood, selected_genres):
# sample exploration songs
if exploration > 0:
n_known = int(playlist_length * (1 - exploration))
n_new = playlist_length - n_known
print(f'Number of new songs: {n_new}, known songs: {n_known}')
known_songs = selected_tracks_uris[:n_known]
seed_songs = selected_tracks_uris[-n_new:]
seed_genres = selected_tracks_genres[-n_new:]
dict_args = dict() # enforce bounds on recommendations' moods
for i_m, m in enumerate(['valence', 'energy', 'danceability']):
dict_args[f'min_{m}'] = max(0, target_mood[i_m] - 0.1)
dict_args[f'max_{m}'] = min(1, target_mood[i_m] + 0.1)
dict_args_loose = dict() # enforce bounds on recommendations' moods
for i_m, m in enumerate(['valence', 'energy', 'danceability']):
dict_args_loose[f'min_{m}'] = max(0, target_mood[i_m] - 0.2)
dict_args_loose[f'max_{m}'] = min(1, target_mood[i_m] + 0.2)
dict_args_looser = dict() # enforce bounds on recommendations' moods
for i_m, m in enumerate(['valence', 'energy', 'danceability']):
dict_args_loose[f'min_{m}'] = max(0, target_mood[i_m] - 0.3)
dict_args_loose[f'max_{m}'] = min(1, target_mood[i_m] + 0.3)
new_songs = []
counter_seed = 0
print(selected_genres)
while len(new_songs) < n_new:
try:
print(seed_songs[counter_seed])
print(dict_args)
np.random.shuffle(selected_genres)
reco = sp.recommendations(seed_tracks=[seed_songs[counter_seed]], seed_genres=selected_genres,
market="from_token", country='from_token', **dict_args)['tracks']
if len(reco) == 0:
print('Using loose bounds')
np.random.shuffle(selected_genres)
reco = sp.recommendations(seed_tracks=[seed_songs[counter_seed]], seed_genres=selected_genres,
market="from_token", country='from_token', **dict_args_loose)['tracks']
if len(reco) == 0:
print('Using looser bounds')
np.random.shuffle(selected_genres)
reco = sp.recommendations(seed_tracks=[seed_songs[counter_seed]], seed_genres=selected_genres,
market="from_token", country='from_token', **dict_args_looser)['tracks']
if len(reco) == 0:
print('Removing bounds')
reco = sp.recommendations(seed_tracks=[seed_songs[counter_seed]], market="from_token")['tracks']
assert len(reco) > 0
for r in reco:
if r['uri'] not in all_tracks_uris and r['uri'] not in new_songs:
new_songs.append(r['uri'])
break
except:
pass
print(counter_seed, len(new_songs))
counter_seed = (counter_seed + 1) % len(seed_songs)
assert len(new_songs) == n_new
assert len(known_songs) == n_known
selected_tracks_uris = np.array(list(known_songs) + new_songs)
np.random.shuffle(selected_tracks_uris)
return selected_tracks_uris
@st.cache
def sample_playlist(n_candidates, playlist_length, genre_selected_indexes, min_dist_indexes, all_tracks_uris, all_tracks_genres):
# give more freedom to randomize the playlist
if n_candidates > 5 * playlist_length:
selected_tracks_indexes = genre_selected_indexes[min_dist_indexes[:int(playlist_length * 2)]]
else:
selected_tracks_indexes = genre_selected_indexes[min_dist_indexes[:playlist_length]]
shuffled_indexes = np.arange(len(selected_tracks_indexes))
np.random.shuffle(shuffled_indexes)
selected_tracks_uris = all_tracks_uris[selected_tracks_indexes][shuffled_indexes]
selected_tracks_genres = all_tracks_genres[selected_tracks_indexes][shuffled_indexes]
selected_tracks_uris = selected_tracks_uris[:playlist_length]
selected_tracks_genres = selected_tracks_genres[:playlist_length]
return selected_tracks_uris, selected_tracks_genres
def run_app():
global sp
setup_credentials()
image = Image.open(dir_path + '/image.png')
st.image(image)
st.markdown("This app let's you quickly build playlists in a customized way: ")
st.markdown("* **It's easy**: you won't have to add songs one by one,\n"
"* **You're in control**: you provide the source of songs, select genres and pick the mood,\n"
"* **You're free to explore**: set the exploration strength from no new songs to all new songs.")
sp, user_id, legit_genres, auth_manager = log_to_spotify()
if 'login' in st.session_state or debug:
all_tracks_uris, all_tracks_audio_features, all_tracks_genres, indexes_by_genre, genres_labels, updated_sources = select_songs(legit_genres)
if all_tracks_uris is not None:
target_mood, exploration = customize_widgets(genres_labels, updated_sources)
custom_button = centered_button(st.button, 'Run customization', n_columns=5)
if custom_button or 'run_custom' in st.session_state.keys() or debug:
st.session_state['run_custom'] = True
checkboxes = st.session_state['checkboxes'].copy()
selected_genres = [genres_labels[i] for i in range(len(genres_labels)) if checkboxes[i] and genres_labels[i] != 'unknown']
init_time = time.time()
genre_selected_indexes = filter_songs_by_genre(checkboxes, genres_labels, indexes_by_genre)
if len(genre_selected_indexes) < 10:
genre_selected_indexes = None
st.warning('Please select more genres or add more music sources.')
else:
st.success(f'{len(genre_selected_indexes)} candidate tracks selected.')
print(f'6. filter by genre: {time.time() - init_time:.2f}')
init_time = time.time()
if genre_selected_indexes is not None:
min_dist_indexes, n_candidates = find_best_songs_for_mood(all_tracks_audio_features, genre_selected_indexes, target_mood)
print(f'7. filter by mood: {time.time() - init_time:.2f}')
init_time = time.time()
if n_candidates < 25:
st.warning('Please add more music sources or select more genres.')
else:
playlist_length = st.number_input(f'Pick a playlist length, given {n_candidates} candidates.', min_value=5,
value=min(10, n_candidates//3), max_value=n_candidates//3)
selected_tracks_uris, selected_tracks_genres = sample_playlist(n_candidates, playlist_length, genre_selected_indexes,
min_dist_indexes, all_tracks_uris, all_tracks_genres)
print(f'8. Sample songs: {time.time() - init_time:.2f}')
init_time = time.time()
playlist_name = st.text_input('Playlist name', value='Mood Playlist')
if playlist_name == '':
st.warning('Please enter a playlist name.')
else:
generation_button = centered_button(st.button, 'Generate playlist', n_columns=5)
if generation_button:
selected_tracks_uris = run_exploration(selected_tracks_uris, selected_tracks_genres, playlist_length, exploration, all_tracks_uris,
target_mood.flatten(), selected_genres)
print(f'9. run exploration: {time.time() - init_time:.2f}')
init_time = time.time()
target_mood = np.array(target_mood).flatten() * 100
description = f'Emotion Playlist for Valence: {int(target_mood[0])}, ' \
f'Energy: {int(target_mood[1])}, ' \
f'Danceability: {int(target_mood[2])}). ' \
f'Playlist generated by the EmotionPlaylist app: https://huggingface.co/spaces/ccolas/EmotionPlaylist.'
playlist_info = sp.user_playlist_create(user_id, playlist_name, public=True, collaborative=False, description=description)
playlist_uri = playlist_info['uri'].split(':')[-1]
sp.playlist_add_items(playlist_uri, selected_tracks_uris)
st.write(
f"""
<html>
<body>
<center>
<iframe style = "border-radius:12px" src="https://open.spotify.com/embed/playlist/{playlist_uri}" allowtransparency="true"
allow="encrypted-media" width="80%" height="580" frameborder="0"></iframe></center></body></html>
""", unsafe_allow_html=True)
st.success(f'The playlist has been generated, find it [here](https://open.spotify.com/playlist/{playlist_uri}).')
stop = 1
if __name__ == '__main__':
run_app()