File size: 11,186 Bytes
93c029f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from src.cocktails.utilities.cocktail_generation_utilities.individual import *
from sklearn.neighbors import NearestNeighbors
import time
import pickle
from src.cocktails.config import COCKTAIL_NN_PATH, COCKTAILS_CSV_DATA

class Population:
    def __init__(self, target, pop_params, target_affective_cluster=None, known_target_dict=None):
        self.pop_params = pop_params
        self.pop_size = pop_params['pop_size']
        self.nb_elite = pop_params['nb_elites']
        self.nb_generations = pop_params['nb_generations']
        self.target = target
        self.mutation_params = pop_params['mutation_params']
        self.dist = pop_params['dist']
        self.n_neighbors = pop_params['n_neighbors']
        self.known_target_dict = known_target_dict


        with open(COCKTAIL_NN_PATH, 'rb') as f:
            data = pickle.load(f)
        self.nn_model_cocktail = data['nn_model']
        self.dim_rep_cocktail = data['dim_rep_cocktail']
        self.n_cocktails = data['n_cocktails']
        self.cocktail_data = pd.read_csv(COCKTAILS_CSV_DATA)

        if target_affective_cluster is None:
            cocktail_rep_affective = get_normalized_affective_cocktail_rep_from_normalized_cocktail_rep(target)
            self.target_affective_cluster = cocktail2affective_cluster(cocktail_rep_affective)[0]
        else:
            self.target_affective_cluster = target_affective_cluster

        self.pop_elite = []
        self.pop = []
        self.add_target_individual()  # create a target individual (not in pop)
        self.add_nearest_neighbors_in_pop()  # add nearest neighbor from dataset into the population

        # fill population
        while self.get_pop_size() < self.pop_size:
            self.add_individual()
        while len(self.pop_elite) < self.nb_elite:
            self.pop_elite.append(IndividualCocktail(pop_params=self.pop_params,
                                                     target=self.target.copy(),
                                                     target_affective_cluster=self.target_affective_cluster))
        self.update_elite_and_get_next_pop()

    def add_target_individual(self):
        if self.known_target_dict is not None:
            genes_presence, genes_quantity = self.get_q_rep(*extract_ingredients(self.known_target_dict['ing_str']))
            self.target_individual = IndividualCocktail(pop_params=self.pop_params,
                                                        target=self.target.copy(),
                                                        known_target_dict=self.known_target_dict,
                                                        target_affective_cluster=self.target_affective_cluster,
                                                        genes_presence=genes_presence,
                                                        genes_quantity=genes_quantity
                                                        )
        else:
            self.target_individual = None


    def add_nearest_neighbors_in_pop(self):
        # add nearest neighbor from dataset into the population
        if self.n_neighbors > 0:
            dists, indexes = self.nn_model_cocktail.kneighbors(self.target.reshape(1, -1))
            dists, indexes = dists.flatten(), indexes.flatten()
            first = 1 if dists[0] == 0 else 0  # avoid taking the target when testing with known targets from the dataset
            indexes = indexes[first:first + self.n_neighbors]
            self.ing_strs = np.array(self.cocktail_data['ingredients_str'])[indexes]
            recipes = [extract_ingredients(ing_str) for ing_str in self.ing_strs]
            for r in recipes:
                genes_presence, genes_quantity = self.get_q_rep(r[0], r[1])
                genes_presence[-1] = 0  # remove water ingredient
                self.add_individual(genes_presence=genes_presence.copy(), genes_quantity=genes_quantity.copy())
            self.nn_recipes = [ind.get_recipe()[3] for ind in self.pop]
            self.nn_scores = [ind.perf for ind in self.pop]
        else:
            self.ing_strs = None

    def add_individual(self, genes_presence=None, genes_quantity=None):
        self.pop.append(IndividualCocktail(pop_params=self.pop_params,
                                           target=self.target.copy(),
                                           target_affective_cluster=self.target_affective_cluster,
                                           genes_presence=genes_presence,
                                           genes_quantity=genes_quantity))

    def get_elite_perf(self):
        return np.array([e.perf for e in self.pop_elite])

    def get_pop_perf(self):
        return np.array([ind.perf for ind in self.pop])


    def update_elite_and_get_next_pop(self):
        time_dict = dict()
        init_time = time.time()
        elite_perfs = self.get_elite_perf()
        pop_perfs = self.get_pop_perf()
        all_perfs = np.concatenate([elite_perfs, pop_perfs])
        temp_list = self.pop_elite + self.pop
        time_dict['  get pop perfs'] = [time.time() - init_time]
        init_time = time.time()
        # update elite  population with new bests
        indexes_sorted = np.flip(np.argsort(all_perfs))
        new_pop_elite = [IndividualCocktail(pop_params=self.pop_params,
                                            target=self.target.copy(),
                                            target_affective_cluster=self.target_affective_cluster,
                                            genes_presence=temp_list[i_new_e].genes_presence.copy(),
                                            genes_quantity=temp_list[i_new_e].genes_quantity.copy()) for i_new_e in indexes_sorted[:self.nb_elite]]
        time_dict['  recreate elite individuals'] = [time.time() - init_time]
        init_time = time.time()
        # select parents
        rank_perfs = np.flip(np.arange(len(temp_list)))
        sampling_probs = rank_perfs / np.sum(rank_perfs)
        if self.mutation_params['asexual_rep'] and not self.mutation_params['crossover']:
            new_pop_indexes = np.random.choice(indexes_sorted, p=sampling_probs, size=self.pop_size)
            self.pop = [temp_list[i].get_child() for i in new_pop_indexes]
        elif self.mutation_params['crossover'] and not self.mutation_params['asexual_rep']:
            self.pop = []
            while len(self.pop) < self.pop_size:
                parents = np.random.choice(indexes_sorted, p=sampling_probs, size=2, replace=False)
                self.pop.append(temp_list[parents[0]].get_child_with(temp_list[parents[1]]))
        elif self.mutation_params['crossover'] and self.mutation_params['asexual_rep']:
            new_pop_indexes = np.random.choice(indexes_sorted, p=sampling_probs, size=self.pop_size//2)
            time_dict['  choose asexual parent indexes'] = [time.time() - init_time]
            init_time = time.time()
            self.pop = []
            for i in new_pop_indexes:
                child, this_time_dict = temp_list[i].get_child()
                self.pop.append(child)
                time_dict = self.update_time_dict(time_dict, this_time_dict)
            time_dict['  get asexual children'] = [time.time() - init_time]
            init_time = time.time()
            while len(self.pop) < self.pop_size:
                parents = np.random.choice(indexes_sorted, p=sampling_probs, size=2, replace=False)
                child, this_time_dict = temp_list[parents[0]].get_child_with(temp_list[parents[1]])
                self.pop.append(child)
                time_dict = self.update_time_dict(time_dict, this_time_dict)
            time_dict['  get sexual children'] = [time.time() - init_time]
        self.pop_elite = new_pop_elite
        return time_dict

    def get_pop_size(self):
        return len(self.pop)

    def get_q_rep(self, ingredients, quantities):
        ingredient_q_rep = np.zeros([len(ingredient_list)])
        genes_presence = np.zeros([len(ingredient_list)])
        for ing, q in zip(ingredients, quantities):
            ingredient_q_rep[ingredient_list.index(ing)] = q
            genes_presence[ingredient_list.index(ing)] = 1
        return genes_presence.copy(), normalize_ingredient_q_rep(ingredient_q_rep)

    def get_best_score(self, affective_cluster_check=False):
        elite_perfs = self.get_elite_perf()
        pop_perfs = self.get_pop_perf()
        all_perfs = np.concatenate([elite_perfs, pop_perfs])
        temp_list = self.pop_elite + self.pop
        if affective_cluster_check:
            indexes = np.array([i for i in range(len(temp_list)) if temp_list[i].does_affective_cluster_match()])
            if indexes.size > 0:
                temp_list = np.array(temp_list)[indexes]
                all_perfs = all_perfs[indexes]
        indexes_best = np.flip(np.argsort(all_perfs))
        return np.array(all_perfs)[indexes_best], np.array(temp_list)[indexes_best]

    def update_time_dict(self, main_dict, new_dict):
        for k in new_dict.keys():
            if k in main_dict.keys():
                main_dict[k].append(np.sum(new_dict[k]))
            else:
                main_dict[k] = [np.sum(new_dict[k])]
        return main_dict

    def run_one_generation(self, verbose=True, affective_cluster_check=False):
        time_dict = dict()
        init_time = time.time()
        this_time_dict = self.update_elite_and_get_next_pop()
        time_dict['update_elite_and_pop'] = [time.time() - init_time]
        time_dict = self.update_time_dict(time_dict, this_time_dict)
        init_time = time.time()
        best_perfs, best_individuals = self.get_best_score(affective_cluster_check)
        time_dict['get best scores'] = [time.time() - init_time]
        return best_perfs[0], time_dict

    def run_evolution(self, verbose=False, print_every=10, affective_cluster_check=False, level=0):
        best_score = -np.inf
        time_dict = dict()
        init_time = time.time()
        for i in range(self.nb_generations):
            best_score, this_time_dict = self.run_one_generation(verbose, affective_cluster_check=affective_cluster_check)
            time_dict = self.update_time_dict(time_dict, this_time_dict)
            if verbose and (i+1) % print_every == 0:
                print(' ' * level + f'Gen #{i+1} - Current best perf: {best_score:.2f}, time: {time.time() - init_time:.4f}')
                init_time = time.time()
                #
                # to_print = time_dict.copy()
                # keys = sorted(to_print.keys())
                # values = []
                # for k in keys:
                #     to_print[k] = np.sum(to_print[k])
                #     values.append(to_print[k])
                # sorted_inds = np.flip(np.argsort(values))
                # for i in sorted_inds:
                #     print(f'{keys[i]}: {values[i]:.4f}')
        if verbose: print(' ' * level + f'Evolution over, best perf: {best_score:.2f}')
        return self.get_best_score()

    def print_results(self, n=3):
        best_scores, best_ind = self.get_best_score()
        for i in range(n):
            best_ind[i].print_recipe(f'Candidate #{i+1}, Score: {best_scores[i]:.2f}')