File size: 2,608 Bytes
bb285c0
aeac508
 
 
4e0c03c
fb9d859
 
4e0c03c
fb9d859
 
4e0c03c
 
fb9d859
4e0c03c
fb9d859
4e0c03c
 
 
 
aeac508
bb285c0
b9a73f5
aeac508
bb285c0
aeac508
 
 
 
 
 
 
eaab174
d6f3644
 
 
 
 
aeac508
bb285c0
aeac508
 
 
 
 
 
 
 
 
 
 
bb285c0
 
aeac508
 
bb285c0
 
aeac508
bb285c0
4e0c03c
bb285c0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

import warnings
warnings.filterwarnings("ignore")

import librosa          # Library for loading and processing audio files.
import numpy as np      # Library for numerical computations, used for signal processing.
import gradio as gr     # Library for creating a web-based user interface for inference.
from transformers import pipeline    # Import pipeline for automatic speech recognition (ASR).

# Importing custom utility functions for text processing.
from text2int import text_to_int     # Converts text numbers (e.g., "one") into integers (e.g., 1).
from isNumber import is_number       # Checks if a string is a number.
from Text2List import text_to_list   # Converts a text string into a list of words.
from convert2list import convert_to_list     # Converts processed text into a structured list.
from processDoubles import process_doubles   # Handles repeated words or numbers in speech recognition output.
from replaceWords import replace_words       # Replaces specific words in the recognized text with alternatives.
from highPassFilter import high_pass_filter  # filter noise by bypassing high frequency signals.
from waveletDenoise import wavelet_denoise   # used for signal Denoising.
from applyWienerFilter import apply_wiener_filter # for Signal Denoising.

# Initialize ASR model pipeline
asr_model = pipeline("automatic-speech-recognition", model="cdactvm/w2v-bert-punjabi")

# Function to handle speech recognition
def recognize_speech(audio_file):
    audio, sr = librosa.load(audio_file, sr=16000)
    audio = high_pass_filter(audio, sr)
    audio = apply_wiener_filter(audio)
    denoised_audio = wavelet_denoise(audio)
    result = asr_model(denoised_audio)
    text_value = result['text']
    cleaned_text = text_value.replace("[PAD]", "")
    converted_to_list = convert_to_list(cleaned_text, text_to_list())
    processed_doubles = process_doubles(converted_to_list)
    replaced_words = replace_words(processed_doubles)
    converted_text = text_to_int(replaced_words)
    return converted_text


def sel_lng(lng, mic=None, file=None):
    if mic is not None:
        audio = mic
    elif file is not None:
        audio = file
    else:
        return "You must either provide a mic recording or a file"
    
    if lng == "model_1":
        return recognize_speech(audio)
        
# Create a Gradio interface
demo = gr.Interface(
    fn=sel_lng, 
    inputs=[
        gr.Dropdown(["model_1"], label="Select Model"),
        gr.Audio(sources=["microphone", "upload"], type="filepath"),
    ],
    outputs=["textbox"],
    title="Automatic Speech Recognition"
)
demo.launch()