File size: 1,430 Bytes
ea5222d
 
 
6dd1216
ea5222d
 
 
6dd1216
ea5222d
 
 
 
 
 
 
 
 
 
6dd1216
 
ea5222d
 
6dd1216
ea5222d
6dd1216
ea5222d
 
 
6dd1216
d7e5b26
ea5222d
 
 
 
 
 
 
 
 
 
 
785d3e4
 
 
 
b4d56a1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#import gradio as gr
#from transformers import pipeline
#p1= pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-odia_v1")

#def transcribe_odiya(speech):
#    #print (p1(speech))
#    text = p1(speech)["text"]
    #text=cleanhtml(text)
#    return text
#def sel_lng(lng,mic=None, file=None):
#    if mic is not None:
#        audio = mic
#    elif file is not None:
#        audio = file
#    else:
#        return "You must either provide a mic recording or a file"
#    if (lng=="Odiya"):
#        return transcribe_odiya(audio)
    
        
#demo=gr.Interface(
#    fn=sel_lng, 
      
#    inputs=[
        
#        gr.Dropdown(["Odiya"],value="Odiya",label="Select Language"),
#        gr.Audio(sources="microphone", type="filepath"),
#        gr.Audio(sources="upload", type="filepath"),
        #"state"
#    ],
#    outputs=[
#        "textbox"
#        #"state"
#    ],
#    title="Automatic Speech Recognition",
#    description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox",
#      ).launch()



#demo.launch()
from huggingface_hub import Repository
repo = Repository(local_dir="indic-trans", clone_from="https://github.com/libindic/indic-trans.gi")
#import os
#os.system('git clone https://github.com/libindic/indic-trans.gi')