Spaces:
Sleeping
Sleeping
File size: 11,407 Bytes
9a29707 451f968 5baf1ba edf087c 4da13bc a13d2fb 451f968 9a29707 edf087c 07c24e8 edf087c 9a29707 edf087c 6dd1216 7aaf14b 3325cab edf087c 5baf1ba 9a29707 5baf1ba 9a29707 eaa3add 9a29707 eaa3add 9a29707 5baf1ba a875242 cb9e139 a875242 cb9e139 a875242 cb9e139 eaa3add a875242 cb9e139 a875242 9fc1cf9 a875242 9fc1cf9 9a29707 cb9e139 9a29707 cb9e139 9a29707 9fc1cf9 cb9e139 9fc1cf9 9a29707 71ca02a cb9e139 9a29707 9fc1cf9 4c902e5 9a29707 9fc1cf9 5baf1ba 6dd1216 5baf1ba 6dd1216 eaa3add b4d2c26 6dd1216 5baf1ba ea5222d 5baf1ba 3325cab 7aaf14b 5baf1ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import warnings
warnings.filterwarnings("ignore")
import gradio as gr
from transformers import pipeline
import os
import re
#import torchaudio
# Initialize the speech recognition pipeline and transliterator
pipe = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-odia_v1")
p1 = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-odia_v1")
p2 = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-hindi_v1")
os.system('git clone https://github.com/irshadbhat/indic-trans.git')
os.system('pip install ./indic-trans/.')
#HF_TOKEN = os.getenv('HF_TOKEN')
#hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "asr_demo")
from indictrans import Transliterator
trn = Transliterator(source='ori', target='eng', build_lookup=True)
def transcribe_odiya(speech):
text = p1(speech)["text"]
if text is None:
return "Error: ASR returned None"
return text
def transcribe_hindi(speech):
text = p2(speech)["text"]
if text is None:
return "Error: ASR returned None"
return text
def transcribe_odiya_eng(speech):
trn = Transliterator(source='ori', target='eng', build_lookup=True)
text = p1(speech)["text"]
if text is None:
return "Error: ASR returned None"
sentence = trn.transform(text)
if sentence is None:
return "Error: Transliteration returned None"
replaced_words = replace_words(sentence)
processed_sentence = process_doubles(replaced_words)
return process_transcription(processed_sentence)
def transcribe_hin_eng(speech):
trn = Transliterator(source='hin', target='eng', build_lookup=True)
text = p2(speech)["text"]
if text is None:
return "Error: ASR returned None"
sentence = trn.transform(text)
if sentence is None:
return "Error: Transliteration returned None"
replaced_words = replace_words(sentence)
processed_sentence = process_doubles(replaced_words)
return process_transcription(processed_sentence)
def process_transcription(input_sentence):
word_to_code_map = {}
code_to_word_map = {}
transcript_1 = sentence_to_transcript(input_sentence, word_to_code_map)
if transcript_1 is None:
return "Error: Transcript conversion returned None"
numbers = text2int(transcript_1)
if numbers is None:
return "Error: Text to number conversion returned None"
code_to_word_map = {v: k for k, v in word_to_code_map.items()}
text = transcript_to_sentence(numbers, code_to_word_map)
return text
def sel_lng(lng, mic=None, file=None):
if mic is not None:
audio = mic
elif file is not None:
audio = file
else:
return "You must either provide a mic recording or a file"
if lng == "Odiya":
return transcribe_odiya(audio)
elif lng == "Odiya-trans":
return transcribe_odiya_eng(audio)
elif lng == "Hindi-trans":
return transcribe_hin_eng(audio)
elif lng == "Hindi":
return transcribe_hindi(audio)
# Function to replace incorrectly spelled words
def replace_words(sentence):
replacements = [
(r'\bjiro\b', 'zero'), (r'\bjero\b', 'zero'), (r'\bnn\b', 'one'),
(r'\bn\b', 'one'), (r'\bna\b', 'one'), (r'\btu\b', 'two'),
(r'\btoo\b', 'two'), (r'\bthiri\b', 'three'), (r'\bfor\b', 'four'),
(r'\bfore\b', 'four'), (r'\bfib\b', 'five'), (r'\bdublseven\b', 'double seven'),
(r'\bdubalathri\b', 'double three'), (r'\bnineeit\b', 'nine eight'),
(r'\bfipeit\b', 'five eight'), (r'\bdubal\b', 'double'), (r'\bsevenatu\b', 'seven two'),
]
for pattern, replacement in replacements:
sentence = re.sub(pattern, replacement, sentence)
return sentence
# Function to process "double" followed by a number
def process_doubles(sentence):
tokens = sentence.split()
result = []
i = 0
while i < len(tokens):
if tokens[i] in ("double", "dubal"):
if i + 1 < len(tokens):
result.append(tokens[i + 1])
result.append(tokens[i + 1])
i += 2
else:
result.append(tokens[i])
i += 1
else:
result.append(tokens[i])
i += 1
return ' '.join(result)
# Function to generate Soundex code for a word
def soundex(word):
word = word.upper()
word = ''.join(filter(str.isalpha, word))
if not word:
return None
soundex_mapping = {
'B': '1', 'F': '1', 'P': '1', 'V': '1',
'C': '2', 'G': '2', 'J': '2', 'K': '2', 'Q': '2', 'S': '2', 'X': '2', 'Z': '2',
'D': '3', 'T': '3', 'L': '4', 'M': '5', 'N': '5', 'R': '6'
}
soundex_code = word[0]
for char in word[1:]:
if char not in ('H', 'W'):
soundex_code += soundex_mapping.get(char, '0')
soundex_code = soundex_code[0] + ''.join(c for i, c in enumerate(soundex_code[1:]) if c != soundex_code[i])
soundex_code = soundex_code.replace('0', '') + '000'
return soundex_code[:4]
# Function to convert text to numerical representation
def is_number(x):
if type(x) == str:
x = x.replace(',', '')
try:
float(x)
except:
return False
return True
def text2int(textnum, numwords={}):
units = ['Z600', 'O500','T000','T600','F600','F100','S220','S150','E300','N500',
'T500', 'E415', 'T410', 'T635', 'F635', 'F135', 'S235', 'S153', 'E235','N535']
tens = ['', '', 'T537', 'T637', 'F637', 'F137', 'S230', 'S153', 'E230', 'N530']
scales = ['H536', 'T253', 'M450', 'C600']
ordinal_words = {'oh': 'Z600', 'first': 'O500', 'second': 'T000', 'third': 'T600', 'fourth': 'F600', 'fifth': 'F100',
'sixth': 'S200','seventh': 'S150','eighth': 'E230', 'ninth': 'N500', 'twelfth': 'T410'}
ordinal_endings = [('ieth', 'y'), ('th', '')]
if not numwords:
numwords['and'] = (1, 0)
for idx, word in enumerate(units): numwords[word] = (1, idx)
for idx, word in enumerate(tens): numwords[word] = (1, idx * 10)
for idx, word in enumerate(scales): numwords[word] = (10 ** (idx * 3 or 2), 0)
textnum = textnum.replace('-', ' ')
current = result = 0
curstring = ''
onnumber = False
lastunit = False
lastscale = False
def is_numword(x):
if is_number(x):
return True
if word in numwords:
return True
return False
def from_numword(x):
if is_number(x):
scale = 0
increment = int(x.replace(',', ''))
return scale, increment
return numwords[x]
for word in textnum.split():
if word in ordinal_words:
scale, increment = (1, ordinal_words[word])
current = current * scale + increment
if scale > 100:
result += current
current = 0
onnumber = True
lastunit = False
lastscale = False
else:
for ending, replacement in ordinal_endings:
if word.endswith(ending):
word = "%s%s" % (word[:-len(ending)], replacement)
if (not is_numword(word)) or (word == 'and' and not lastscale):
if onnumber:
curstring += repr(result + current) + " "
curstring += word + " "
result = current = 0
onnumber = False
lastunit = False
lastscale = False
else:
scale, increment = from_numword(word)
onnumber = True
if lastunit and (word not in scales):
curstring += repr(result + current)
result = current = 0
if scale > 1:
current = max(1, current)
current = current * scale + increment
if scale > 100:
result += current
current = 0
lastscale = False
lastunit = False
if word in scales:
lastscale = True
elif word in units:
lastunit = True
if onnumber:
curstring += repr(result + current)
return curstring
# Convert sentence to transcript using Soundex
def sentence_to_transcript(sentence, word_to_code_map):
words = sentence.split()
transcript_codes = []
for word in words:
if word not in word_to_code_map:
word_to_code_map[word] = soundex(word)
transcript_codes.append(word_to_code_map[word])
transcript = ' '.join(transcript_codes)
return transcript
# Convert transcript back to sentence using mapping
def transcript_to_sentence(transcript, code_to_word_map):
codes = transcript.split()
sentence_words = []
for code in codes:
sentence_words.append(code_to_word_map.get(code, code))
sentence = ' '.join(sentence_words)
return sentence
# # Process the audio file
# transcript = pipe("./odia_recorded/AUD-20240614-WA0004.wav")
# text_value = transcript['text']
# sentence = trn.transform(text_value)
# replaced_words = replace_words(sentence)
# processed_sentence = process_doubles(replaced_words)
# input_sentence_1 = processed_sentence
# Create empty mappings
word_to_code_map = {}
code_to_word_map = {}
# Convert sentence to transcript
# transcript_1 = sentence_to_transcript(input_sentence_1, word_to_code_map)
# Convert transcript to numerical representation
# numbers = text2int(transcript_1)
# Create reverse mapping
code_to_word_map = {v: k for k, v in word_to_code_map.items()}
# Convert transcript back to sentence
# reconstructed_sentence_1 = transcript_to_sentence(numbers, code_to_word_map)
# demo=gr.Interface(
# fn=sel_lng,
# inputs=[
# gr.Dropdown(["Hindi","Hindi-trans","Odiya","Odiya-trans"],value="Hindi",label="Select Language"),
# gr.Audio(source="microphone", type="filepath"),
# gr.Audio(source= "upload", type="filepath"),
# #gr.Audio(sources="upload", type="filepath"),
# #"state"
# ],
# outputs=[
# "textbox"
# # #"state"
# ],
# title="Automatic Speech Recognition",
# description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox",
# ).launch()
######################################################
demo=gr.Interface(
fn=sel_lng,
inputs=[
gr.Dropdown(["Hindi","Hindi-trans","Odiya","Odiya-trans"],value="Hindi",label="Select Language"),
gr.Audio(sources=["microphone","upload"], type="filepath"),
#gr.Audio(sources="upload", type="filepath"),
#"state"
],
outputs=[
"textbox"
# #"state"
],
allow_flagging="manual",
flagging_options=["Language error", "English transliteration error", "Other"],
#flagging_callback=hf_writer,
title="Automatic Speech Recognition",
description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox",
).launch()
|