File size: 11,407 Bytes
9a29707
 
451f968
5baf1ba
 
edf087c
4da13bc
a13d2fb
451f968
9a29707
 
 
edf087c
07c24e8
edf087c
9a29707
 
 
edf087c
 
6dd1216
7aaf14b
 
3325cab
edf087c
 
5baf1ba
 
9a29707
 
5baf1ba
9a29707
eaa3add
 
9a29707
 
eaa3add
9a29707
5baf1ba
 
 
a875242
 
cb9e139
a875242
 
cb9e139
 
a875242
cb9e139
eaa3add
 
 
a875242
 
cb9e139
a875242
 
 
 
 
9fc1cf9
a875242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fc1cf9
9a29707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb9e139
 
 
 
 
 
 
 
 
 
 
 
 
9a29707
cb9e139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a29707
9fc1cf9
 
 
 
 
 
cb9e139
 
 
 
9fc1cf9
 
 
 
 
 
 
 
9a29707
71ca02a
 
 
 
 
 
 
 
 
cb9e139
9a29707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fc1cf9
4c902e5
 
 
 
 
 
 
 
 
 
 
 
9a29707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fc1cf9
5baf1ba
 
6dd1216
5baf1ba
6dd1216
eaa3add
b4d2c26
 
6dd1216
5baf1ba
 
 
ea5222d
5baf1ba
3325cab
 
7aaf14b
5baf1ba
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import warnings
warnings.filterwarnings("ignore")

import gradio as gr
from transformers import pipeline

import os
import re
#import torchaudio


# Initialize the speech recognition pipeline and transliterator
 
pipe = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-odia_v1")


p1 = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-odia_v1")
p2 = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-hindi_v1")
os.system('git clone https://github.com/irshadbhat/indic-trans.git')
os.system('pip install ./indic-trans/.')

#HF_TOKEN = os.getenv('HF_TOKEN')
#hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "asr_demo")

from indictrans import Transliterator
trn = Transliterator(source='ori', target='eng', build_lookup=True)
def transcribe_odiya(speech):
    text = p1(speech)["text"]
    if text is None:
        return "Error: ASR returned None"
    return text

def transcribe_hindi(speech):
    text = p2(speech)["text"]
    if text is None:
        return "Error: ASR returned None"
    return text

def transcribe_odiya_eng(speech):
    trn = Transliterator(source='ori', target='eng', build_lookup=True)
    text = p1(speech)["text"]
    if text is None:
        return "Error: ASR returned None"
    sentence = trn.transform(text)
    if sentence is None:
        return "Error: Transliteration returned None"
    replaced_words = replace_words(sentence)
    processed_sentence = process_doubles(replaced_words)
    return process_transcription(processed_sentence)

def transcribe_hin_eng(speech):
    trn = Transliterator(source='hin', target='eng', build_lookup=True)
    text = p2(speech)["text"]
    if text is None:
        return "Error: ASR returned None"
    sentence = trn.transform(text)
    if sentence is None:
        return "Error: Transliteration returned None"
    replaced_words = replace_words(sentence)
    processed_sentence = process_doubles(replaced_words)
    return process_transcription(processed_sentence)

def process_transcription(input_sentence):
    word_to_code_map = {}
    code_to_word_map = {}

    transcript_1 = sentence_to_transcript(input_sentence, word_to_code_map)
    if transcript_1 is None:
        return "Error: Transcript conversion returned None"

    numbers = text2int(transcript_1)
    if numbers is None:
        return "Error: Text to number conversion returned None"

    code_to_word_map = {v: k for k, v in word_to_code_map.items()}
    text = transcript_to_sentence(numbers, code_to_word_map)
    return text

def sel_lng(lng, mic=None, file=None):
    if mic is not None:
        audio = mic
    elif file is not None:
        audio = file
    else:
        return "You must either provide a mic recording or a file"
    
    if lng == "Odiya":
        return transcribe_odiya(audio)
    elif lng == "Odiya-trans":
        return transcribe_odiya_eng(audio)
    elif lng == "Hindi-trans":
        return transcribe_hin_eng(audio)
    elif lng == "Hindi":
        return transcribe_hindi(audio)
    
# Function to replace incorrectly spelled words
def replace_words(sentence):
    replacements = [
        (r'\bjiro\b', 'zero'), (r'\bjero\b', 'zero'), (r'\bnn\b', 'one'),
        (r'\bn\b', 'one'), (r'\bna\b', 'one'), (r'\btu\b', 'two'),
        (r'\btoo\b', 'two'), (r'\bthiri\b', 'three'), (r'\bfor\b', 'four'),
        (r'\bfore\b', 'four'), (r'\bfib\b', 'five'), (r'\bdublseven\b', 'double seven'),
        (r'\bdubalathri\b', 'double three'), (r'\bnineeit\b', 'nine eight'),
        (r'\bfipeit\b', 'five eight'), (r'\bdubal\b', 'double'), (r'\bsevenatu\b', 'seven two'),
    ]
    for pattern, replacement in replacements:
        sentence = re.sub(pattern, replacement, sentence)
    return sentence

# Function to process "double" followed by a number
def process_doubles(sentence):
    tokens = sentence.split()
    result = []
    i = 0
    while i < len(tokens):
        if tokens[i] in ("double", "dubal"):
            if i + 1 < len(tokens):
                result.append(tokens[i + 1])
                result.append(tokens[i + 1])
                i += 2
            else:
                result.append(tokens[i])
                i += 1
        else:
            result.append(tokens[i])
            i += 1
    return ' '.join(result)

# Function to generate Soundex code for a word
def soundex(word):
    word = word.upper()
    word = ''.join(filter(str.isalpha, word))
    if not word:
        return None
    soundex_mapping = {
        'B': '1', 'F': '1', 'P': '1', 'V': '1',
        'C': '2', 'G': '2', 'J': '2', 'K': '2', 'Q': '2', 'S': '2', 'X': '2', 'Z': '2',
        'D': '3', 'T': '3', 'L': '4', 'M': '5', 'N': '5', 'R': '6'
    }
    soundex_code = word[0]
    for char in word[1:]:
        if char not in ('H', 'W'):
            soundex_code += soundex_mapping.get(char, '0')
            soundex_code = soundex_code[0] + ''.join(c for i, c in enumerate(soundex_code[1:]) if c != soundex_code[i])
            soundex_code = soundex_code.replace('0', '') + '000'
    return soundex_code[:4]

# Function to convert text to numerical representation
def is_number(x):
    if type(x) == str:
        x = x.replace(',', '')
    try:
        float(x)
    except:
        return False
    return True

def text2int(textnum, numwords={}):
    units = ['Z600', 'O500','T000','T600','F600','F100','S220','S150','E300','N500',
             'T500', 'E415', 'T410', 'T635', 'F635', 'F135', 'S235', 'S153', 'E235','N535']
    tens = ['', '', 'T537', 'T637', 'F637', 'F137', 'S230', 'S153', 'E230', 'N530']
    scales = ['H536', 'T253', 'M450', 'C600']
    ordinal_words = {'oh': 'Z600', 'first': 'O500', 'second': 'T000', 'third': 'T600', 'fourth': 'F600', 'fifth': 'F100',
                     'sixth': 'S200','seventh': 'S150','eighth': 'E230', 'ninth': 'N500', 'twelfth': 'T410'}
    ordinal_endings = [('ieth', 'y'), ('th', '')]
    if not numwords:
        numwords['and'] = (1, 0)
        for idx, word in enumerate(units): numwords[word] = (1, idx)
        for idx, word in enumerate(tens): numwords[word] = (1, idx * 10)
        for idx, word in enumerate(scales): numwords[word] = (10 ** (idx * 3 or 2), 0)

    textnum = textnum.replace('-', ' ')

    current = result = 0
    curstring = ''
    onnumber = False
    lastunit = False
    lastscale = False

    def is_numword(x):
        if is_number(x):
            return True
        if word in numwords:
            return True
        return False

    def from_numword(x):
        if is_number(x):
            scale = 0
            increment = int(x.replace(',', ''))
            return scale, increment
        return numwords[x]

    for word in textnum.split():
        if word in ordinal_words:
            scale, increment = (1, ordinal_words[word])
            current = current * scale + increment
            if scale > 100:
                result += current
                current = 0
            onnumber = True
            lastunit = False
            lastscale = False
        else:
            for ending, replacement in ordinal_endings:
                if word.endswith(ending):
                    word = "%s%s" % (word[:-len(ending)], replacement)

            if (not is_numword(word)) or (word == 'and' and not lastscale):
                if onnumber:
                    curstring += repr(result + current) + " "
                curstring += word + " "
                result = current = 0
                onnumber = False
                lastunit = False
                lastscale = False
            else:
                scale, increment = from_numword(word)
                onnumber = True

                if lastunit and (word not in scales):
                    curstring += repr(result + current)
                    result = current = 0

                if scale > 1:
                    current = max(1, current)

                current = current * scale + increment
                if scale > 100:
                    result += current
                    current = 0

                lastscale = False
                lastunit = False
                if word in scales:
                    lastscale = True
                elif word in units:
                    lastunit = True

    if onnumber:
        curstring += repr(result + current)

    return curstring

# Convert sentence to transcript using Soundex
def sentence_to_transcript(sentence, word_to_code_map):
    words = sentence.split()
    transcript_codes = []

    for word in words:
        if word not in word_to_code_map:
            word_to_code_map[word] = soundex(word)
        transcript_codes.append(word_to_code_map[word])
    
    transcript = ' '.join(transcript_codes)
    return transcript

# Convert transcript back to sentence using mapping
def transcript_to_sentence(transcript, code_to_word_map):
    codes = transcript.split()
    sentence_words = []

    for code in codes:
        sentence_words.append(code_to_word_map.get(code, code))
    
    sentence = ' '.join(sentence_words)
    return sentence

# # Process the audio file
# transcript = pipe("./odia_recorded/AUD-20240614-WA0004.wav")
# text_value = transcript['text']
# sentence = trn.transform(text_value)
# replaced_words = replace_words(sentence)
# processed_sentence = process_doubles(replaced_words)

# input_sentence_1 = processed_sentence

# Create empty mappings
word_to_code_map = {}
code_to_word_map = {}

# Convert sentence to transcript
# transcript_1 = sentence_to_transcript(input_sentence_1, word_to_code_map)

# Convert transcript to numerical representation
# numbers = text2int(transcript_1)

# Create reverse mapping
code_to_word_map = {v: k for k, v in word_to_code_map.items()}

# Convert transcript back to sentence
# reconstructed_sentence_1 = transcript_to_sentence(numbers, code_to_word_map)

# demo=gr.Interface(
#     fn=sel_lng, 
      
#     inputs=[
        
#         gr.Dropdown(["Hindi","Hindi-trans","Odiya","Odiya-trans"],value="Hindi",label="Select Language"),
#         gr.Audio(source="microphone", type="filepath"),
#         gr.Audio(source= "upload", type="filepath"),
#         #gr.Audio(sources="upload", type="filepath"),
#         #"state"
#     ],
#     outputs=[
#         "textbox"
# #        #"state"
#     ],
#     title="Automatic Speech Recognition",
#     description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox",
#       ).launch()

######################################################     
demo=gr.Interface(
    fn=sel_lng, 
      
    inputs=[
        
        gr.Dropdown(["Hindi","Hindi-trans","Odiya","Odiya-trans"],value="Hindi",label="Select Language"),
        gr.Audio(sources=["microphone","upload"], type="filepath"),
        #gr.Audio(sources="upload", type="filepath"),
        #"state"
    ],
    outputs=[
        "textbox"
#        #"state"
    ],
    allow_flagging="manual",
    flagging_options=["Language error", "English transliteration error", "Other"],
    #flagging_callback=hf_writer,
    title="Automatic Speech Recognition",
    description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox",
      ).launch()