File size: 1,615 Bytes
5baf1ba
 
 
 
 
 
6dd1216
5baf1ba
 
 
6dd1216
5baf1ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b57f
5baf1ba
 
6dd1216
 
5baf1ba
 
6dd1216
5baf1ba
6dd1216
5baf1ba
 
 
6dd1216
5baf1ba
 
 
ea5222d
5baf1ba
 
 
 
 
 
ea5222d
 
 
b4d56a1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import gradio as gr
from transformers import pipeline
#import os
#os.system('git clone https://github.com/irshadbhat/indic-trans.git')
#os.system('pip install ./indic-trans/.')
p1= pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-odia_v1")

def transcribe_odiya(speech):
    #print (p1(speech))
    text = p1(speech)["text"]
    #text=cleanhtml(text)
    return text
def transcribe_odiya_eng(speech):
    from indictrans import Transliterator
    trn = Transliterator(source='ori', target='eng', build_lookup=True)
    text = p1(speech)["text"]
    text=trn.transform(text)
    return text
    
def sel_lng(lng,mic=None, file=None):
    if mic is not None:
        audio = mic
    elif file is not None:
        audio = file
    else:
        return "You must either provide a mic recording or a file"
    if (lng=="Odiya"):
        return transcribe_odiya(audio)
    elif (lng=="Odiya-trans"):
        return transcribe_odiya_eng(audio)
    
    
        
demo=gr.Interface(
    fn=sel_lng, 
      
    inputs=[
        
        gr.Dropdown(["Odiya","Odiya-trans"],value="Odiya",label="Select Language"),
        gr.Audio(sources="microphone", type="filepath"),
        gr.Audio(sources="upload", type="filepath"),
        #"state"
    ],
    outputs=[
        "textbox"
#        #"state"
    ],
    title="Automatic Speech Recognition",
    description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox",
      ).launch()