Spaces:
Sleeping
Sleeping
File size: 1,615 Bytes
5baf1ba 6dd1216 5baf1ba 6dd1216 5baf1ba b54b57f 5baf1ba 6dd1216 5baf1ba 6dd1216 5baf1ba 6dd1216 5baf1ba 6dd1216 5baf1ba ea5222d 5baf1ba ea5222d b4d56a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
from transformers import pipeline
#import os
#os.system('git clone https://github.com/irshadbhat/indic-trans.git')
#os.system('pip install ./indic-trans/.')
p1= pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-odia_v1")
def transcribe_odiya(speech):
#print (p1(speech))
text = p1(speech)["text"]
#text=cleanhtml(text)
return text
def transcribe_odiya_eng(speech):
from indictrans import Transliterator
trn = Transliterator(source='ori', target='eng', build_lookup=True)
text = p1(speech)["text"]
text=trn.transform(text)
return text
def sel_lng(lng,mic=None, file=None):
if mic is not None:
audio = mic
elif file is not None:
audio = file
else:
return "You must either provide a mic recording or a file"
if (lng=="Odiya"):
return transcribe_odiya(audio)
elif (lng=="Odiya-trans"):
return transcribe_odiya_eng(audio)
demo=gr.Interface(
fn=sel_lng,
inputs=[
gr.Dropdown(["Odiya","Odiya-trans"],value="Odiya",label="Select Language"),
gr.Audio(sources="microphone", type="filepath"),
gr.Audio(sources="upload", type="filepath"),
#"state"
],
outputs=[
"textbox"
# #"state"
],
title="Automatic Speech Recognition",
description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox",
).launch()
|