File size: 1,287 Bytes
1500574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
import gradio as gr
import torchaudio
from transformers import AutoModel, AutoProcessor
from quanto import qint8, quantize, freeze

# Load and quantize the model
model_name = "cdactvm/w2v-bert-punjabi"
model = AutoModel.from_pretrained(model_name)
processor = AutoProcessor.from_pretrained(model_name)

# Quantization
quantize(model, weights=qint8, activations=None)
freeze(model)

# Audio transcription function
def transcribe(audio):
    waveform, sample_rate = torchaudio.load(audio)

    # Ensure 16kHz sample rate
    if sample_rate != 16000:
        waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)

    # Process audio
    inputs = processor(waveform.squeeze(0), sampling_rate=16000, return_tensors="pt")

    # Run inference
    with torch.no_grad():
        logits = model(**inputs).logits

    # Decode transcription
    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = processor.batch_decode(predicted_ids)[0]
    
    return transcription

# Gradio UI
iface = gr.Interface(
    fn=transcribe,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs="text",
    title="Punjabi Speech Recognition",
    description="Upload an audio file and get a Punjabi transcription using a quantized model.",
)

iface.launch()