File size: 3,374 Bytes
9568e5e
 
 
 
1500574
9568e5e
 
1500574
9568e5e
 
 
82814b2
 
 
 
 
153933b
82814b2
 
 
 
 
 
 
 
 
 
 
1500574
82814b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9568e5e
 
1500574
9568e5e
 
 
966d76f
9568e5e
 
 
ed97bcc
9568e5e
 
 
ed97bcc
9568e5e
 
82814b2
9568e5e
 
ed97bcc
9568e5e
1500574
82814b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1500574
966d76f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import torch
import torchaudio
import gradio as gr
from transformers import Wav2Vec2BertProcessor, Wav2Vec2BertForCTC

# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load processor & model
model_name = "cdactvm/w2v-bert-punjabi"  # Change if using a Punjabi ASR model
processor = Wav2Vec2BertProcessor.from_pretrained(model_name)
# Loading the original model.
original_model=Wav2Vec2BertForCTC.from_pretrained(model_name)
# Explicitly allow Wav2Vec2BertForCTC during unpickling3+
torch.serialization.add_safe_globals([Wav2Vec2BertForCTC])
# Load the full quantized model
quantized_model = torch.load("cdactvm/w2v-bert-punjabi/wav2vec2_bert_qint8.pth", weights_only=False)
quantized_model.eval()

#####################################################
# recognize speech using original model
def transcribe_original_model(audio_path):
    # Load audio file
    waveform, sample_rate = torchaudio.load(audio_path)

    # Convert stereo to mono (if needed)
    if waveform.shape[0] > 1:
        waveform = torch.mean(waveform, dim=0, keepdim=True)

    # Resample to 16kHz
    if sample_rate != 16000:
        waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform)

    # Process audio
    inputs = processor(waveform.squeeze(0), sampling_rate=16000, return_tensors="pt")
    inputs = {key: val.to(device, dtype=torch.bfloat16) for key, val in inputs.items()}

    # Get logits & transcribe
    with torch.no_grad():
        logits = original_model(**inputs).logits
    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = processor.batch_decode(predicted_ids)[0]

    return transcription

    
# recognize speech using quantized model.
def transcribe_quantized_model(audio_path):
    # Load audio file
    waveform, sample_rate = torchaudio.load(audio_path)

    # Convert stereo to mono (if needed)
    if waveform.shape[0] > 1:
        waveform = torch.mean(waveform, dim=0, keepdim=True)

    # Resample to 16kHz
    if sample_rate != 16000:
        waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform)

    # Process audio
    inputs = processor(waveform.squeeze(0), sampling_rate=16000, return_tensors="pt")
    inputs = {key: val.to(device, dtype=torch.bfloat16) for key, val in inputs.items()}

    # Get logits & transcribe
    with torch.no_grad():
        logits = quantized_model(**inputs).logits
    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = processor.batch_decode(predicted_ids)[0]

    return transcription

def select_lng(lng, mic=None, file=None):
    if mic is not None:
        audio = mic
    elif file is not None:
        audio = file
    else:
        return "You must either provide a mic recording or a file"
    
    if lng == "original_model":
        return transcribe_original_model(audio)
    elif lng == "quantized_model":
        return transcribe_quantized_model(audio)

 
# Gradio Interface            
demo=gr.Interface(
    fn=select_lng,  
    inputs=[
        gr.Dropdown(["original_model","quantized_model"],label="Select Model"),
        gr.Audio(sources=["microphone","upload"], type="filepath"),
    ],
    outputs=["textbox"],
    title="Automatic Speech Recognition",
    description = "Upload an audio file and get the transcription in Punjabi.",
    )

if __name__ == "__main__":
    app.launch()