cdactvm commited on
Commit
2041085
·
verified ·
1 Parent(s): 7af4b35

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -79
app.py CHANGED
@@ -1,83 +1,16 @@
1
  import os
2
- import warnings
3
- import gradio as gr
4
 
 
 
5
 
6
-
7
-
8
- # Initialize the speech recognition pipeline and transliterator
9
-
10
- #p1 = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-odia_v1")
11
- #p2 = pipeline(task="automatic-speech-recognition", model="cdactvm/w2v-bert-2.0-hindi_v1")
12
-
13
- HF_TOKEN = os.getenv('HW_TOKEN')
14
- hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "save_audio")
15
-
16
-
17
- cur_line=0
18
-
19
- def readFile():
20
- f=open('prompt.txt')
21
- line_num=0
22
- lines=f.readlines()
23
- line_num = len(lines)
24
- return line_num,lines
25
-
26
- totlines,file_content=readFile()
27
-
28
- callback = gr.CSVLogger()
29
-
30
- def readPromt():
31
- global cur_line
32
- cur_line+=1
33
- global file_content
34
- print (cur_line)
35
- return file_content[cur_line]
36
-
37
- def readNext():
38
-
39
- global totlines
40
- print(totlines)
41
- global cur_line
42
- if cur_line<totlines-1:
43
- cur_line+=1
44
- global file_content
45
- print (cur_line)
46
- return [file_content[cur_line],None]
47
-
48
- def readPrevious():
49
- global cur_line
50
- if cur_line>=0:
51
- cur_line-=1
52
- #cur_line=current_line
53
- global file_content
54
- print (cur_line)
55
- return [file_content[cur_line],None]
56
-
57
- demo = gr.Blocks()
58
-
59
- with demo:
60
- #dr=gr.Dropdown(["Hindi","Odiya"],value="Odiya",label="Select Language")
61
- #audio_file = gr.Audio(sources=["microphone","upload"],type="filepath")
62
- text = gr.Textbox(readPromt())
63
- upfile = gr.Audio(
64
- sources=["microphone","upload"], type="filepath", label="Record"
65
- )
66
- #upfile = gr.inputs.Audio(source="upload", type="filepath", label="Upload")
67
-
68
- with gr.Row():
69
- b1 = gr.Button("Save")
70
- b2 = gr.Button("Next")
71
- b3 = gr.Button("Previous")
72
- #b4=gr.Button("Clear")
73
- b2.click(readNext,inputs=None,outputs=[text,upfile])
74
- b3.click(readPrevious,inputs=None,outputs=[text,upfile])
75
- #b4.click(lambda: None, outputs=upfile)
76
- # b1.click(sel_lng, inputs=[dr,mic,upfile], outputs=text)
77
- #b2.click(text_to_sentiment, inputs=text, outputs=label)
78
- #callback.setup([text, upfile], "flagged_data_points")
79
- #callback.setup([text, upfile], hf_writer)
80
- #b1.click(lambda *args: callback.flag(args), [text, upfile], None, preprocess=False)
81
  flagging_callback=hf_writer
82
- b1.click(lambda *args: flagging_callback, [text, upfile], None, preprocess=False)
83
- demo.launch()
 
 
1
  import os
 
 
2
 
3
+ HF_TOKEN = os.getenv('HF_TOKEN')
4
+ hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-calculator-demo")
5
 
6
+ iface = gr.Interface(
7
+ calculator,
8
+ ["number", gr.Radio(["add", "subtract", "multiply", "divide"]), "number"],
9
+ "number",
10
+ description="Check out the crowd-sourced dataset at: [https://huggingface.co/datasets/aliabd/crowdsourced-calculator-demo](https://huggingface.co/datasets/aliabd/crowdsourced-calculator-demo)",
11
+ allow_flagging="manual",
12
+ flagging_options=["wrong sign", "off by one", "other"],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  flagging_callback=hf_writer
14
+ )
15
+
16
+ iface.launch()