Last commit not found
import os | |
from PIL import Image, ImageOps, ImageChops | |
import io | |
import fitz # PyMuPDF | |
from docx import Document | |
from rembg import remove | |
import gradio as gr | |
from hezar.models import Model | |
from ultralytics import YOLO | |
import json | |
# ایجاد دایرکتوریهای لازم | |
os.makedirs("static", exist_ok=True) | |
os.makedirs("output_images", exist_ok=True) | |
def trim_whitespace(image): | |
gray_image = ImageOps.grayscale(image) | |
inverted_image = ImageChops.invert(gray_image) | |
bbox = inverted_image.getbbox() | |
trimmed_image = image.crop(bbox) | |
return trimmed_image | |
def convert_pdf_to_images(pdf_path, zoom=2): | |
pdf_document = fitz.open(pdf_path) | |
images = [] | |
for page_num in range(len(pdf_document)): | |
page = pdf_document.load_page(page_num) | |
matrix = fitz.Matrix(zoom, zoom) | |
pix = page.get_pixmap(matrix=matrix) | |
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
trimmed_image = trim_whitespace(image) | |
images.append(trimmed_image) | |
return images | |
def convert_docx_to_jpeg(docx_bytes): | |
document = Document(BytesIO(docx_bytes)) | |
images = [] | |
for rel in document.part.rels.values(): | |
if "image" in rel.target_ref: | |
image_stream = rel.target_part.blob | |
image = Image.open(BytesIO(image_stream)) | |
jpeg_image = BytesIO() | |
image.convert('RGB').save(jpeg_image, format="JPEG") | |
jpeg_image.seek(0) | |
images.append(Image.open(jpeg_image)) | |
return images | |
def remove_background_from_image(image): | |
return remove(image) | |
def process_file(input_file): | |
file_extension = os.path.splitext(input_file.name)[1].lower() | |
images = [] | |
if file_extension in ['.png', '.jpeg', '.jpg', '.bmp', '.gif']: | |
image = Image.open(input_file) | |
image = image.convert('RGB') | |
output_image = remove_background_from_image(image) | |
images.append(output_image) | |
elif file_extension == '.pdf': | |
images = convert_pdf_to_images(input_file.name) | |
images = [remove_background_from_image(image) for image in images] | |
elif file_extension in ['.docx', '.doc']: | |
images = convert_docx_to_jpeg(input_file.name) | |
images = [remove_background_from_image(image) for image in images] | |
else: | |
return "File format not supported." | |
input_folder = 'output_images' | |
for i, img in enumerate(images): | |
img.save(os.path.join(input_folder, f'image_{i}.jpg')) | |
return images | |
def run_detection_and_ocr(): | |
# Load models | |
ocr_model = Model.load('hezarai/crnn-fa-printed-96-long') | |
yolo_model = YOLO("/content/drive/MyDrive/train3/weights/best.pt") | |
input_folder = 'output_images' | |
yolo_model.predict(input_folder, save=True, imgsz=320, conf=0.5, save_crop=True) | |
output_folder = '/content/runs/detect/predict' | |
results = [] | |
for filename in os.listdir(input_folder): | |
if filename.endswith('.JPEG') or filename.endswith('.jpg'): | |
image_path = os.path.join(input_folder, filename) | |
crop_folder = os.path.join(output_folder, 'crops') | |
crops = [] | |
for crop_label in os.listdir(crop_folder): | |
crop_label_folder = os.path.join(crop_folder, crop_label) | |
if os.path.isdir(crop_label_folder): | |
for crop_filename in os.listdir(crop_label_folder): | |
crop_image_path = os.path.join(crop_label_folder, crop_filename) | |
text_prediction = predict_text(ocr_model, crop_image_path) | |
crops.append({ | |
'crop_image_path': crop_image_path, | |
'text_prediction': text_prediction, | |
'class_label': crop_label | |
}) | |
results.append({ | |
'image': filename, | |
'crops': crops | |
}) | |
output_json_path = 'output.json' | |
with open(output_json_path, 'w', encoding='utf-8') as f: | |
json.dump(results, f, ensure_ascii=False, indent=4) | |
return output_json_path | |
def predict_text(model, image_path): | |
try: | |
image = Image.open(image_path) | |
image = image.resize((320, 320)) | |
output = model.predict(image) | |
if isinstance(output, list): | |
return ' '.join([item['text'] for item in output]) | |
return str(output) | |
except FileNotFoundError: | |
return "N/A" | |
def gradio_interface(input_file): | |
process_file(input_file) | |
json_output = run_detection_and_ocr() | |
with open(json_output, 'r', encoding='utf-8') as f: | |
return json.load(f) | |
iface = gr.Interface( | |
fn=gradio_interface, | |
inputs=gr.File(label="Upload Word, PDF, or Image"), | |
outputs=gr.JSON(label="JSON Output"), | |
title="Document to JSON Converter with Background Removal" | |
) | |
if __name__ == "__main__": | |
iface.launch() |