Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import os
|
4 |
+
import docx2txt
|
5 |
+
import PyPDF2 as pdf
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
def generate_response_from_jabir(resume_text, job_description):
|
11 |
+
base_url = "https://api.jabirproject.org/generate"
|
12 |
+
headers = {"apikey": os.getenv("7471142a-deb4-4a70-8ee3-6603e21bcc1d")}
|
13 |
+
input_prompt_template = """
|
14 |
+
As an experienced Applicant Tracking System (ATS) analyst,
|
15 |
+
with profound knowledge in technology, software engineering, data science,
|
16 |
+
and big data engineering, your role involves evaluating resumes against job descriptions.
|
17 |
+
Recognizing the competitive job market, provide top-notch assistance for resume improvement.
|
18 |
+
Your goal is to analyze the resume against the given job description,
|
19 |
+
assign a percentage match based on key criteria, and pinpoint missing keywords accurately.
|
20 |
+
resume:{text}
|
21 |
+
description:{job_description}
|
22 |
+
I want the response in one single string having the structure
|
23 |
+
{{"Job Description Match":"%","Missing Keywords":"","Candidate Summary":"","Experience":""}}
|
24 |
+
"""
|
25 |
+
prompt = input_prompt_template.format(text=resume_text, job_description=job_description)
|
26 |
+
data = {
|
27 |
+
"messages": [{"role": "user", "content": prompt}]
|
28 |
+
}
|
29 |
+
response = requests.post(base_url, headers=headers, json=data)
|
30 |
+
|
31 |
+
if response.ok:
|
32 |
+
response_text = response.json()["choices"][0]["message"]["content"]
|
33 |
+
match_percentage_str = response_text.split('"Job Description Match":"')[1].split('"')[0]
|
34 |
+
match_percentage = float(match_percentage_str.rstrip('%'))
|
35 |
+
|
36 |
+
if match_percentage >= 80:
|
37 |
+
recommendation = "Move forward with hiring"
|
38 |
+
else:
|
39 |
+
recommendation = "Not a Match"
|
40 |
+
|
41 |
+
return response_text, recommendation
|
42 |
+
else:
|
43 |
+
return f"Error: {response.status_code}, {response.text}", None
|
44 |
+
|
45 |
+
def extract_text_from_file(uploaded_file):
|
46 |
+
if uploaded_file.name.endswith('.pdf'):
|
47 |
+
pdf_reader = pdf.PdfReader(uploaded_file)
|
48 |
+
text_content = ""
|
49 |
+
for page in pdf_reader.pages:
|
50 |
+
text_content += str(page.extract_text())
|
51 |
+
return text_content
|
52 |
+
elif uploaded_file.name.endswith('.docx'):
|
53 |
+
return docx2txt.process(uploaded_file)
|
54 |
+
else:
|
55 |
+
return "Unsupported file format"
|
56 |
+
|
57 |
+
def process_file(uploaded_file, job_description):
|
58 |
+
if uploaded_file is not None:
|
59 |
+
resume_text = extract_text_from_file(uploaded_file)
|
60 |
+
return generate_response_from_jabir(resume_text, job_description)
|
61 |
+
else:
|
62 |
+
return "No file uploaded", None
|
63 |
+
|
64 |
+
iface = gr.Interface(
|
65 |
+
fn=process_file,
|
66 |
+
inputs=[gr.Textbox(lines=10, label="resume ") ,gr.Textbox(lines=10, label="Job Description")],
|
67 |
+
outputs=[gr.Textbox(label="ATS Evaluation Result"), gr.Textbox(label="Recommendation")],
|
68 |
+
title="Intelligent ATS-Enhance Your Resume ATS"
|
69 |
+
)
|
70 |
+
|
71 |
+
iface.launch()
|