cdcvd commited on
Commit
1dc1048
·
verified ·
1 Parent(s): aa3deae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -69,15 +69,15 @@ def extract_ner_info(text, nlp):
69
  age = None
70
 
71
  for i in range(len(ner_results)):
72
- if ner_results[i]['entity'] == 'B-PER':
73
  full_name = ner_results[i]['word']
74
  for j in range(i+1, len(ner_results)):
75
- if ner_results[j]['entity'].startswith('I-PER'):
76
  full_name += ner_results[j]['word'].replace('##', '')
77
  else:
78
  break
79
 
80
- if ner_results[i]['entity'] == 'B-LOC' and not loc:
81
  loc = ner_results[i]['word']
82
 
83
  age_match = re.search(r'سن\s*:\s*(\d+)', text)
@@ -86,6 +86,7 @@ def extract_ner_info(text, nlp):
86
 
87
  return full_name, loc, age
88
 
 
89
  def process_text(input_text):
90
  # مسیر فایل اکسل‌ها را وارد کنید
91
  job_excel_file_path = 'jobs_output.xlsx'
@@ -167,7 +168,7 @@ def process_text(input_text):
167
  skill_score, common_skills = compare_skills(skills_in_fixed_text, skills_in_input_text)
168
 
169
  # تنظیم و آماده‌سازی مدل NER
170
- model_name_or_path = "HooshvareLab/distilbert-fa-zwnj-base-ner"
171
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
172
  model = AutoModelForTokenClassification.from_pretrained(model_name_or_path) # Pytorch
173
  nlp = pipeline("ner", model=model, tokenizer=tokenizer)
 
69
  age = None
70
 
71
  for i in range(len(ner_results)):
72
+ if ner_results[i]['entity'] == 'B-pers':
73
  full_name = ner_results[i]['word']
74
  for j in range(i+1, len(ner_results)):
75
+ if ner_results[j]['entity'].startswith('I-pers'):
76
  full_name += ner_results[j]['word'].replace('##', '')
77
  else:
78
  break
79
 
80
+ if ner_results[i]['entity'] == 'I-fac' and not loc:
81
  loc = ner_results[i]['word']
82
 
83
  age_match = re.search(r'سن\s*:\s*(\d+)', text)
 
86
 
87
  return full_name, loc, age
88
 
89
+
90
  def process_text(input_text):
91
  # مسیر فایل اکسل‌ها را وارد کنید
92
  job_excel_file_path = 'jobs_output.xlsx'
 
168
  skill_score, common_skills = compare_skills(skills_in_fixed_text, skills_in_input_text)
169
 
170
  # تنظیم و آماده‌سازی مدل NER
171
+ model_name_or_path = "NLPclass/Named-entity-recognition"
172
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
173
  model = AutoModelForTokenClassification.from_pretrained(model_name_or_path) # Pytorch
174
  nlp = pipeline("ner", model=model, tokenizer=tokenizer)