Spaces:
Sleeping
Sleeping
from sklearn.model_selection import train_test_split | |
from sklearn.svm import SVR | |
from sklearn.ensemble import RandomForestRegressor | |
from sklearn.linear_model import LinearRegression, Lasso | |
from sklearn.metrics import r2_score | |
class ModelTrainer: | |
def __init__(self, dataframe): | |
self.dataframe = dataframe | |
def train_models(self): | |
features = list(self.dataframe.columns[:-1]) | |
X = self.dataframe[features] | |
y = self.dataframe['TARGET'] | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
models = { | |
"SVR": SVR(), | |
"RandomForest": RandomForestRegressor(), | |
"LinearRegression": LinearRegression(), | |
"Lasso": Lasso() | |
} | |
best_model = None | |
best_score = float('-inf') | |
for name, model in models.items(): | |
model.fit(X_train, y_train) | |
y_pred = model.predict(X_test) | |
score = r2_score(y_test, y_pred) | |
print(f"{name} R2 Score: {score}") | |
if score > best_score: | |
best_score = score | |
best_model = model | |
print(f"Best Model: {best_model}") | |
return best_model |