Spaces:
Sleeping
Sleeping
import openai | |
import re | |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline | |
import torch | |
class ResumeExtractor: | |
def __init__(self, ner_model_name_or_path, openai_api_key): | |
self.ner_model_name_or_path = ner_model_name_or_path | |
self.tokenizer = AutoTokenizer.from_pretrained(ner_model_name_or_path) | |
self.model = AutoModelForTokenClassification.from_pretrained(ner_model_name_or_path) | |
self.nlp = pipeline("ner", model=self.model, tokenizer=self.tokenizer) | |
openai.api_key = openai_api_key | |
def calculate_age(self, date_string): | |
current_year = 1403 | |
ymd_match = re.match(r'(\d{1,4})/(\d{1,2})/(\d{1,2})', date_string) | |
if ymd_match: | |
year = int(ymd_match.group(1)) | |
if len(ymd_match.group(1)) == 4: | |
age = current_year - year | |
else: | |
year += 1300 | |
age = current_year - year | |
return age | |
four_digit_match = re.match(r'(13\d{2})', date_string) | |
if four_digit_match: | |
year = int(four_digit_match.group(1)) | |
age = current_year - year | |
return age | |
return None | |
def translate_text(self, text, target_language="en"): | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant that translates text."}, | |
{"role": "user", "content": f"Translate the following text to {target_language}:\n\n{text}"} | |
], | |
max_tokens=1000 | |
) | |
return response.choices[0].message["content"].strip() | |
def extract_ner_info(self, text): | |
ner_results = self.nlp(text) | |
full_name = '' | |
loc = '' | |
age = None | |
i = 0 | |
while i < len(ner_results): | |
if ner_results[i]['entity'] == 'B-pers' and ner_results[i]['score'] >= 0.80: | |
if full_name: | |
full_name += ' ' | |
full_name += ner_results[i]['word'] | |
current_score = ner_results[i]['score'] | |
stop_adding = False | |
for j in range(i + 1, len(ner_results)): | |
if ner_results[j]['entity'] == 'I-pers' and ner_results[j]['score'] >= 0.80: | |
if ner_results[j]['score'] >= current_score * 0.90: | |
full_name += ner_results[j]['word'].replace('##', '') | |
current_score = ner_results[j]['score'] | |
i = j | |
else: | |
stop_adding = True | |
break | |
else: | |
stop_adding = True | |
break | |
if stop_adding: | |
break | |
i += 1 | |
for entity in ner_results: | |
if entity['entity'] in ['B-loc', 'I-loc']: | |
if loc: | |
loc += ' ' | |
loc += entity['word'] | |
age_match = re.search(r'سن\s*:\s*(\d+)', text) | |
if age_match: | |
age = int(age_match.group(1)) | |
else: | |
date_match = re.search(r'(\d{1,4}/\d{1,2}/\d{1,2})', text) | |
if date_match: | |
age = self.calculate_age(date_match.group(1)) | |
else: | |
four_digit_match = re.search(r'(13\d{2})', text) | |
if four_digit_match: | |
age = self.calculate_age(four_digit_match.group(1)) | |
return full_name, loc, age | |
def extract_skills(self, text, skill_model_name_or_path): | |
skill_tokenizer = AutoTokenizer.from_pretrained(skill_model_name_or_path) | |
skill_model = AutoModelForTokenClassification.from_pretrained(skill_model_name_or_path) | |
inputs = skill_tokenizer(text, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = skill_model(**inputs) | |
logits = outputs.logits | |
predictions = torch.argmax(logits, dim=2) | |
tokens = skill_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) | |
tags = [skill_model.config.id2label[p.item()] for p in predictions[0]] | |
skills = [] | |
temp_skill = "" | |
for token, tag in zip(tokens, tags): | |
if tag == "B-TECHNOLOGY": | |
if temp_skill: | |
skills.append(temp_skill.strip()) | |
temp_skill = "" | |
skills.append(token) | |
elif tag == "B-TECHNICAL": | |
if temp_skill: | |
skills.append(temp_skill.strip()) | |
temp_skill = "" | |
temp_skill = token | |
elif tag == "I-TECHNICAL": | |
temp_skill += token.replace('##', '') | |
if temp_skill: | |
skills.append(temp_skill.strip()) | |
return list(set(skills)) | |
def extract_education_resume(self, text): | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant that extracts information from text."}, | |
{"role": "user", "content": f"Extract only the highest education degree and field from the following text:\n\n{text}\n\nFormat the response as 'Degree in Field' and nothing else."} | |
], | |
max_tokens=1000 | |
) | |
return response.choices[0].message["content"].strip() | |
def extract_job_resume(self, text): | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant that extracts information from text."}, | |
{"role": "user", "content": f"Extract only the last job title from the following text:\n\n{text}\n\nProvide just the job title and nothing else."} | |
], | |
max_tokens=1000 | |
) | |
return response.choices[0].message["content"].strip() | |
def extract_resume_info(self, resume_text, skill_model_name_or_path): | |
# تابع استخراج اطلاعات کلی از رزومه | |
full_name, loc, age = self.extract_ner_info(resume_text) | |
translated_resume = self.translate_text(resume_text) | |
skills = self.extract_skills(translated_resume, skill_model_name_or_path) | |
education_resume = self.extract_education_resume(translated_resume) | |
title_job_resume = self.extract_job_resume(translated_resume) | |
return full_name, loc, age, skills, education_resume, title_job_resume |