File size: 7,396 Bytes
fbf7e95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import argparse
import concurrent.futures
import csv
import itertools
import time

import numpy as np
import pandas as pd
from more_itertools import chunked

import marcai.processing.comparisons as comps
import marcai.processing.normalizations as norms
from marcai.utils.parsing import load_records, record_dict

from multiprocessing import get_context


def multiprocess_pairs(
    records_df,
    pair_indices,
    chunksize=50000,
    processes=1,
):
    # Create chunked iterator
    pairs_chunked = chunked(pair_indices, chunksize)

    # Create processing jobs
    max_jobs = processes * 2

    context = get_context("fork")

    with concurrent.futures.ProcessPoolExecutor(
        max_workers=processes, mp_context=context
    ) as executor:
        futures = set()
        done = set()
        first_spawn = True

        while futures or first_spawn:
            if first_spawn:
                spawn_count = max_jobs
                first_spawn = False
            else:
                # Wait for a job to complete
                done, futures = concurrent.futures.wait(
                    futures, return_when=concurrent.futures.FIRST_COMPLETED
                )
                spawn_count = max_jobs - len(futures)

                for future in done:
                    # Get job's output
                    df  = future.result()

                    # Yield output
                    yield df

            # Spawn jobs
            for _ in range(spawn_count):
                pairs_chunk = next(pairs_chunked, None)

                if pairs_chunk is None:
                    break
            
                indices = np.array(pairs_chunk).astype(int)

                left_indices = indices[:, 0]
                right_indices = indices[:, 1]

                left_records = records_df.iloc[left_indices].reset_index(drop=True)
                right_records = records_df.iloc[right_indices].reset_index(drop=True)

                futures.add(executor.submit(process, left_records, right_records))


def process(df0, df1):
    normalize_fields = [
        "author_names",
        "corporate_names",
        "meeting_names",
        "publisher",
        "title",
        "title_a",
        "title_b",
        "title_c",
        "title_p",
    ]

    # Normalize text fields
    for field in normalize_fields:
        df0[field] = norms.lowercase(df0[field])
        df1[field] = norms.lowercase(df1[field])

        df0[field] = norms.remove_punctuation(df0[field])
        df1[field] = norms.remove_punctuation(df1[field])

        df0[field] = norms.remove_diacritics(df0[field])
        df1[field] = norms.remove_diacritics(df1[field])

        df0[field] = norms.normalize_whitespace(df0[field])
        df1[field] = norms.normalize_whitespace(df1[field])

    # Compare fields
    result_df = pd.DataFrame()

    result_df["id_0"] = df0["id"]
    result_df["id_1"] = df1["id"]

    result_df["raw_tokenset"] = comps.token_set_similarity(
        df0["raw"], df1["raw"], null_value=0.5
    )


    # Token sort ratio
    result_df["publisher"] = comps.token_sort_similarity(
        df0["publisher"], df1["publisher"], null_value=0.5
    )

    author_names = comps.token_sort_similarity(
        df0["author_names"], df1["author_names"], null_value=np.nan
    )
    corporate_names = comps.token_sort_similarity(
        df0["corporate_names"], df1["corporate_names"], null_value=np.nan
    )
    meeting_names = comps.token_sort_similarity(
        df0["meeting_names"], df1["meeting_names"], null_value=np.nan
    )
    authors = pd.concat([author_names, corporate_names, meeting_names], axis=1)

    # Take max of author comparisons
    result_df["author"] = comps.maximum(authors, null_value=0.5)

    # Weighted title comparison
    weights = {
        "title_a": 1,
        "raw": 0,
        "title_p": 1
    }

    result_df["title_agg"] = comps.column_aggregate_similarity(
        df0[weights.keys()], df1[weights.keys()], weights.values(), null_value=0
    )

    # Phonetic difference
    result_df["title_phonetic"] = comps.phonetic_similarity(
        df0["title"], df1["title"], null_value=0
    )

    # Length difference
    result_df["title_length"] = comps.length_similarity(
        df0["title"], df1["title"], null_value=0.5
    )



    # Token set similarity
    result_df["title_tokenset"] = comps.token_set_similarity(
        df0["title"], df1["title"], null_value=0
    )

    # Token sort ratio
    result_df["title_tokensort"] = comps.token_sort_similarity(
        df0["title"], df1["title"], null_value=0
    )

    # Levenshtein
    result_df["title_levenshtein"] = comps.levenshtein_similarity(
        df0["title"], df1["title"], null_value=0
    )

    # Jaro
    result_df["title_jaro"] = comps.jaro_similarity(
        df0["title"], df1["title"], null_value=0
    )

    # Jaro Winkler
    result_df["title_jaro_winkler"] = comps.jaro_winkler_similarity(
        df0["title"], df1["title"], null_value=0
    )

    # Pagination
    result_df["pagination"] = comps.pagination_match(
        df0["pagination"], df1["pagination"], null_value=0.5
    )

    # Dates
    result_df["pub_date"] = comps.year_similarity(
        df0["pub_date"], df1["pub_date"], null_value=0.5, exp_coeff=0.15
    )

    # Pub place
    result_df["pub_place"] = comps.equal(
        df0["pub_place"], df1["pub_place"], null_value=0.5
    )

    # CID/Label
    result_df["cid"] = comps.equal(df0["cid"], df1["cid"], null_value=0.5)

    return result_df


def parse_args():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )

    required = parser.add_argument_group("required arguments")
    required.add_argument("-i", "--inputs", nargs="+", help="MARC files", required=True)
    required.add_argument("-o", "--output", help="Output file", required=True)

    parser.add_argument(
        "-C",
        "--chunksize",
        type=int,
        help="Number of comparisons per job",
        default=50000,
    )
    parser.add_argument(
        "-p", "--pair-indices", help="File containing indices of comparisons"
    )
    parser.add_argument(
        "-P",
        "--processes",
        type=int,
        help="Number of processes to run in parallel.",
        default=1,
    )

    return parser.parse_args()


def main():
    
    start = time.time()
    args = parse_args()

    # Load records
    print("Loading records...")
    records = []
    for path in args.inputs:
        records.extend([record_dict(r) for r in load_records(path)])

    records_df = pd.DataFrame(records)

    print(f"Loaded {len(records)} records.")

    print("Processing records...")
    # Process records
    written = False
    with open(args.pair_indices, "r") as indices_file:
        reader = csv.reader(indices_file)

        for df in multiprocess_pairs(
            records_df, reader, args.chunksize, args.processes
        ):
            if not written:
                # Write header
                df.to_csv(args.output, mode="w", header=True, index=False)
                written = True
            else:
                # Write rows of df to output CSV
                df.to_csv(args.output, mode="a", header=False, index=False)

    end = time.time()
    print(f"Processed {len(records)} records.")
    print(f"Time elapsed: {end - start:.2f} seconds.")


if __name__ == "__main__":
    main()