Spaces:
Running
Running
File size: 7,396 Bytes
fbf7e95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import argparse
import concurrent.futures
import csv
import itertools
import time
import numpy as np
import pandas as pd
from more_itertools import chunked
import marcai.processing.comparisons as comps
import marcai.processing.normalizations as norms
from marcai.utils.parsing import load_records, record_dict
from multiprocessing import get_context
def multiprocess_pairs(
records_df,
pair_indices,
chunksize=50000,
processes=1,
):
# Create chunked iterator
pairs_chunked = chunked(pair_indices, chunksize)
# Create processing jobs
max_jobs = processes * 2
context = get_context("fork")
with concurrent.futures.ProcessPoolExecutor(
max_workers=processes, mp_context=context
) as executor:
futures = set()
done = set()
first_spawn = True
while futures or first_spawn:
if first_spawn:
spawn_count = max_jobs
first_spawn = False
else:
# Wait for a job to complete
done, futures = concurrent.futures.wait(
futures, return_when=concurrent.futures.FIRST_COMPLETED
)
spawn_count = max_jobs - len(futures)
for future in done:
# Get job's output
df = future.result()
# Yield output
yield df
# Spawn jobs
for _ in range(spawn_count):
pairs_chunk = next(pairs_chunked, None)
if pairs_chunk is None:
break
indices = np.array(pairs_chunk).astype(int)
left_indices = indices[:, 0]
right_indices = indices[:, 1]
left_records = records_df.iloc[left_indices].reset_index(drop=True)
right_records = records_df.iloc[right_indices].reset_index(drop=True)
futures.add(executor.submit(process, left_records, right_records))
def process(df0, df1):
normalize_fields = [
"author_names",
"corporate_names",
"meeting_names",
"publisher",
"title",
"title_a",
"title_b",
"title_c",
"title_p",
]
# Normalize text fields
for field in normalize_fields:
df0[field] = norms.lowercase(df0[field])
df1[field] = norms.lowercase(df1[field])
df0[field] = norms.remove_punctuation(df0[field])
df1[field] = norms.remove_punctuation(df1[field])
df0[field] = norms.remove_diacritics(df0[field])
df1[field] = norms.remove_diacritics(df1[field])
df0[field] = norms.normalize_whitespace(df0[field])
df1[field] = norms.normalize_whitespace(df1[field])
# Compare fields
result_df = pd.DataFrame()
result_df["id_0"] = df0["id"]
result_df["id_1"] = df1["id"]
result_df["raw_tokenset"] = comps.token_set_similarity(
df0["raw"], df1["raw"], null_value=0.5
)
# Token sort ratio
result_df["publisher"] = comps.token_sort_similarity(
df0["publisher"], df1["publisher"], null_value=0.5
)
author_names = comps.token_sort_similarity(
df0["author_names"], df1["author_names"], null_value=np.nan
)
corporate_names = comps.token_sort_similarity(
df0["corporate_names"], df1["corporate_names"], null_value=np.nan
)
meeting_names = comps.token_sort_similarity(
df0["meeting_names"], df1["meeting_names"], null_value=np.nan
)
authors = pd.concat([author_names, corporate_names, meeting_names], axis=1)
# Take max of author comparisons
result_df["author"] = comps.maximum(authors, null_value=0.5)
# Weighted title comparison
weights = {
"title_a": 1,
"raw": 0,
"title_p": 1
}
result_df["title_agg"] = comps.column_aggregate_similarity(
df0[weights.keys()], df1[weights.keys()], weights.values(), null_value=0
)
# Phonetic difference
result_df["title_phonetic"] = comps.phonetic_similarity(
df0["title"], df1["title"], null_value=0
)
# Length difference
result_df["title_length"] = comps.length_similarity(
df0["title"], df1["title"], null_value=0.5
)
# Token set similarity
result_df["title_tokenset"] = comps.token_set_similarity(
df0["title"], df1["title"], null_value=0
)
# Token sort ratio
result_df["title_tokensort"] = comps.token_sort_similarity(
df0["title"], df1["title"], null_value=0
)
# Levenshtein
result_df["title_levenshtein"] = comps.levenshtein_similarity(
df0["title"], df1["title"], null_value=0
)
# Jaro
result_df["title_jaro"] = comps.jaro_similarity(
df0["title"], df1["title"], null_value=0
)
# Jaro Winkler
result_df["title_jaro_winkler"] = comps.jaro_winkler_similarity(
df0["title"], df1["title"], null_value=0
)
# Pagination
result_df["pagination"] = comps.pagination_match(
df0["pagination"], df1["pagination"], null_value=0.5
)
# Dates
result_df["pub_date"] = comps.year_similarity(
df0["pub_date"], df1["pub_date"], null_value=0.5, exp_coeff=0.15
)
# Pub place
result_df["pub_place"] = comps.equal(
df0["pub_place"], df1["pub_place"], null_value=0.5
)
# CID/Label
result_df["cid"] = comps.equal(df0["cid"], df1["cid"], null_value=0.5)
return result_df
def parse_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
required = parser.add_argument_group("required arguments")
required.add_argument("-i", "--inputs", nargs="+", help="MARC files", required=True)
required.add_argument("-o", "--output", help="Output file", required=True)
parser.add_argument(
"-C",
"--chunksize",
type=int,
help="Number of comparisons per job",
default=50000,
)
parser.add_argument(
"-p", "--pair-indices", help="File containing indices of comparisons"
)
parser.add_argument(
"-P",
"--processes",
type=int,
help="Number of processes to run in parallel.",
default=1,
)
return parser.parse_args()
def main():
start = time.time()
args = parse_args()
# Load records
print("Loading records...")
records = []
for path in args.inputs:
records.extend([record_dict(r) for r in load_records(path)])
records_df = pd.DataFrame(records)
print(f"Loaded {len(records)} records.")
print("Processing records...")
# Process records
written = False
with open(args.pair_indices, "r") as indices_file:
reader = csv.reader(indices_file)
for df in multiprocess_pairs(
records_df, reader, args.chunksize, args.processes
):
if not written:
# Write header
df.to_csv(args.output, mode="w", header=True, index=False)
written = True
else:
# Write rows of df to output CSV
df.to_csv(args.output, mode="a", header=False, index=False)
end = time.time()
print(f"Processed {len(records)} records.")
print(f"Time elapsed: {end - start:.2f} seconds.")
if __name__ == "__main__":
main()
|