File size: 16,972 Bytes
43a8c87
37183bc
08a2d0b
 
 
 
 
37183bc
 
bd1d180
08a2d0b
0cdffb9
 
 
 
 
bd1d180
 
 
 
08a2d0b
43a8c87
08a2d0b
 
 
 
37183bc
bd1d180
08a2d0b
3be737f
08a2d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1bf142
08a2d0b
e1bf142
08a2d0b
 
 
 
 
 
bd1d180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70e64be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37183bc
 
 
 
 
 
 
 
08a2d0b
37183bc
 
bd1d180
 
37183bc
 
bd1d180
37183bc
 
0cdffb9
37183bc
69fc921
08a2d0b
37183bc
683b0c2
37183bc
bd1d180
 
37183bc
 
 
 
bd1d180
69fc921
 
37183bc
69fc921
37183bc
69fc921
 
 
 
 
37183bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd1d180
08a2d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
d4d4a7d
08a2d0b
 
 
 
 
 
 
 
 
 
 
cb636fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e41ca0
08a2d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8bb729
 
 
 
 
08a2d0b
 
 
 
 
 
d8bb729
 
08a2d0b
d8bb729
08a2d0b
 
 
 
 
37183bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
accdcf1
70e64be
accdcf1
08a2d0b
 
37183bc
 
 
08a2d0b
 
37183bc
 
 
08a2d0b
 
37183bc
08a2d0b
 
37183bc
08a2d0b
37183bc
 
 
 
 
 
 
 
 
08a2d0b
 
 
 
37183bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08a2d0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37183bc
 
 
 
 
bd1d180
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

import msgspec
import os
import zipfile
from io import BytesIO
from tempfile import NamedTemporaryFile
import tempfile
import numpy as np
import matplotlib.cm as cm
import gradio as gr
import pandas as pd
from PIL import Image
import safetensors.torch
import spaces
import timm
from timm.models import VisionTransformer
import torch
from torchvision.transforms import transforms
from torchvision.transforms import InterpolationMode
import torchvision.transforms.functional as TF
from torch.utils.data import Dataset, DataLoader
from math import ceil
from typing import Callable
from functools import partial
import spaces.config
from spaces.zero.decorator import P, R
from huggingface_hub import hf_hub_download

def _dynGPU(
    fn: Callable[P, R] | None, duration: Callable[P, int], min=10, max=300, step=5
) -> Callable[P, R]:
    if not spaces.config.Config.zero_gpu:
        return fn

    funcs = [
        (t, spaces.GPU(duration=t)(lambda *args, **kwargs: fn(*args, **kwargs)))
        for t in range(min, max + 1, step)
    ]

    def wrapper(*args, **kwargs):
        requirement = duration(*args, **kwargs)

        # find the function that satisfies the duration requirement
        for t, func in funcs:
            if t >= requirement:
                gr.Info(f"Acquiring ZeroGPU for {t} seconds")
                return func(*args, **kwargs)

        # if no function is found, return the last one
        gr.Info(f"Acquiring ZeroGPU for {funcs[-1][0]} seconds")
        return funcs[-1][1](*args, **kwargs)

    return wrapper


def dynGPU(
    fn: Callable[P, R] | None = None,
    duration: Callable[P, int] = lambda: 60,
    min=10,
    max=300,
    step=5,
) -> Callable[P, R]:
    if fn is None:
        return partial(_dynGPU, duration=duration, min=min, max=max, step=step)
    return _dynGPU(fn, duration, min, max, step)
    

class Fit(torch.nn.Module):
    def __init__(
        self,
        bounds: tuple[int, int] | int,
        interpolation = InterpolationMode.LANCZOS,
        grow: bool = True,
        pad: float | None = None
    ):
        super().__init__()

        self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds
        self.interpolation = interpolation
        self.grow = grow
        self.pad = pad

    def forward(self, img: Image) -> Image:
        wimg, himg = img.size
        hbound, wbound = self.bounds

        hscale = hbound / himg
        wscale = wbound / wimg

        if not self.grow:
            hscale = min(hscale, 1.0)
            wscale = min(wscale, 1.0)

        scale = min(hscale, wscale)
        if scale == 1.0:
            return img

        hnew = min(round(himg * scale), hbound)
        wnew = min(round(wimg * scale), wbound)

        img = TF.resize(img, (hnew, wnew), self.interpolation)

        if self.pad is None:
            return img

        hpad = hbound - hnew
        wpad = wbound - wnew

        tpad = hpad // 2
        bpad = hpad - tpad

        lpad = wpad // 2
        rpad = wpad - lpad

        return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad)

    def __repr__(self) -> str:
        return (
            f"{self.__class__.__name__}(" +
            f"bounds={self.bounds}, " +
            f"interpolation={self.interpolation.value}, " +
            f"grow={self.grow}, " +
            f"pad={self.pad})"
        )

class CompositeAlpha(torch.nn.Module):
    def __init__(
        self,
        background: tuple[float, float, float] | float,
    ):
        super().__init__()

        self.background = (background, background, background) if isinstance(background, float) else background
        self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2)

    def forward(self, img: torch.Tensor) -> torch.Tensor:
        if img.shape[-3] == 3:
            return img

        alpha = img[..., 3, None, :, :]

        img[..., :3, :, :] *= alpha

        background = self.background.expand(-1, img.shape[-2], img.shape[-1])
        if background.ndim == 1:
            background = background[:, None, None]
        elif background.ndim == 2:
            background = background[None, :, :]

        img[..., :3, :, :] += (1.0 - alpha) * background
        return img[..., :3, :, :]

    def __repr__(self) -> str:
        return (
            f"{self.__class__.__name__}(" +
            f"background={self.background})"
        )

transform = transforms.Compose([
    Fit((384, 384)),
    transforms.ToTensor(),
    CompositeAlpha(0.5),
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
    transforms.CenterCrop((384, 384)),
])

model = timm.create_model(
    "vit_so400m_patch14_siglip_384.webli",
    pretrained=False,
    num_classes=9083,
) # type: VisionTransformer

class GatedHead(torch.nn.Module):
    def __init__(self,
        num_features: int,
        num_classes: int
    ):
        super().__init__()
        self.num_classes = num_classes
        self.linear = torch.nn.Linear(num_features, num_classes * 2)

        self.act = torch.nn.Sigmoid()
        self.gate = torch.nn.Sigmoid()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.linear(x)
        x = self.act(x[:, :self.num_classes]) * self.gate(x[:, self.num_classes:])
        return x

model.head = GatedHead(min(model.head.weight.shape), 9083)

cached_model = hf_hub_download(
    repo_id="RedRocket/JointTaggerProject",
    subfolder="JTP_PILOT2",
    filename="JTP_PILOT2-e3-vit_so400m_patch14_siglip_384.safetensors"
)

safetensors.torch.load_model(model, cached_model)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
    model.to(device='cuda', dtype=torch.float16, memory_format=torch.channels_last)
model.eval()

with open("tagger_tags.json", "rb") as file:
    tags = msgspec.json.decode(file.read(), type=dict[str, int])

for tag in tags.keys():
    tags[tag.replace("_", " ")] = tags.pop(tag)

allowed_tags = list(tags.keys())

@spaces.GPU(duration=6)
def run_classifier(image: Image.Image, threshold):
    img = image.convert('RGBA')
    tensor = transform(img).unsqueeze(0)

    with torch.no_grad():
        probits = model(tensor)[0] # type: torch.Tensor
        values, indices = probits.cpu().topk(250)

    tag_score = {allowed_tags[idx.item()]: val.item() for idx, val in zip(indices, values)}

    sorted_tag_score = dict(sorted(tag_score.items(), key=lambda item: item[1], reverse=True))

    return *create_tags(threshold, sorted_tag_score), img, sorted_tag_score

def create_tags(threshold, sorted_tag_score: dict):
    filtered_tag_score = {key: value for key, value in sorted_tag_score.items() if value > threshold}
    text_no_impl = ", ".join(filtered_tag_score.keys())
    return text_no_impl, filtered_tag_score

def clear_image():
    return "", {}, None, {}, None

@spaces.GPU(duration=5)
def cam_inference(img, threshold, alpha, evt: gr.SelectData):
    target_tag_index = tags[evt.value]
    tensor = transform(img).unsqueeze(0)

    gradients = {}
    activations = {}

    def hook_forward(module, input, output):
        activations['value'] = output

    def hook_backward(module, grad_in, grad_out):
        gradients['value'] = grad_out[0]

    handle_forward = model.norm.register_forward_hook(hook_forward)
    handle_backward = model.norm.register_full_backward_hook(hook_backward)

    probits = model(tensor)[0]
 
    model.zero_grad()
    probits[target_tag_index].backward(retain_graph=True)

    with torch.no_grad():
        patch_grads = gradients.get('value')
        patch_acts = activations.get('value')
    
        weights = torch.mean(patch_grads, dim=1).squeeze(0)
    
        cam_1d = torch.einsum('pe,e->p', patch_acts.squeeze(0), weights)
        cam_1d = torch.relu(cam_1d)
    
        cam = cam_1d.reshape(27, 27).detach().cpu().numpy()

    handle_forward.remove()
    handle_backward.remove()

    return create_cam_visualization_pil(img, cam, alpha=alpha, vis_threshold=threshold), cam

def create_cam_visualization_pil(image_pil, cam, alpha=0.6, vis_threshold=0.2):
    """
    Overlays CAM on image and returns a PIL image.

    Args:
        image_pil: PIL Image (RGB)
        cam: 2D numpy array (activation map)
        alpha: float, blending factor
        vis_threshold: float, minimum normalized CAM value to show color

    Returns:
        PIL.Image.Image with overlay
    """
    if cam is None:
        return image_pil
    w, h = image_pil.size
    size = max(w, h)

    # Normalize CAM to [0, 1]
    cam -= cam.min()
    cam /= cam.max()

    # Create heatmap using matplotlib colormap
    colormap = cm.get_cmap('inferno')
    cam_rgb = colormap(cam)[:, :, :3]  # RGB

    # Create alpha channel
    cam_alpha = (cam >= vis_threshold).astype(np.float32) * alpha  # Alpha mask
    cam_rgba = np.dstack((cam_rgb, cam_alpha))  # Shape: (H, W, 4)
    
    # Coarse upscale for CAM output -- keeps "blocky" effect that is truer to what is measured
    cam_pil = Image.fromarray((cam_rgba * 255).astype(np.uint8), mode="RGBA")
    cam_pil = cam_pil.resize((216,216), resample=Image.Resampling.NEAREST)

    # Model uses padded image as input, this matches attention map to input image aspect ratio
    cam_pil = cam_pil.resize((size, size), resample=Image.Resampling.BICUBIC)
    cam_pil = transforms.CenterCrop((h, w))(cam_pil)

    # Composite over original
    composite = Image.alpha_composite(image_pil, cam_pil)

    return composite

class ImageDataset(Dataset):
    def __init__(self, image_files, transform):
        self.image_files = image_files
        self.transform = transform
    
    def __len__(self):
        return len(self.image_files)
    
    def __getitem__(self, idx):
        img_path = self.image_files[idx]
        img = Image.open(img_path).convert('RGB')
        return self.transform(img), os.path.basename(img_path)
    
def measure_duration(images, threshold) -> int:
    return ceil(len(images) / 64) * 5 + 3

@dynGPU(duration=measure_duration)
def process_images(images, threshold):
    dataset = ImageDataset(images, transform)

    dataloader = DataLoader(dataset, batch_size=64, num_workers=0, pin_memory=True, drop_last=False)
    
    all_results = []
    with torch.no_grad():
        for batch, filenames in dataloader:
            batch = batch.to(device) 
            probabilities = model(batch)
            for i, prob in enumerate(probabilities):
                indices = torch.where(prob > threshold)[0]
                values = prob[indices]
                
                temp = []
                tag_score = dict()
                for j in range(indices.size(0)):
                    tag = allowed_tags[indices[j]]
                    score = values[j].item()
                    temp.append([tag, score])
                    tag_score[tag] = score
                
                tags = ", ".join([t[0] for t in temp])
                all_results.append((filenames[i], tags, tag_score))
    print(all_results)
    return all_results

def is_valid_image(file_path):
    try:
        with Image.open(file_path) as img:
            img.verify()
        return True
    except:
        return False

def process_zip(zip_file, threshold):
    if zip_file is None:
        return None, None

    with tempfile.TemporaryDirectory() as temp_dir:
        with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
            zip_ref.extractall(temp_dir)
        
        all_files = []
        for root, _, files in os.walk(temp_dir):
            for file in files:
                all_files.append(os.path.join(root, file))
        
        image_files = [f for f in all_files if is_valid_image(f)]
        results = process_images(image_files, threshold)
    
        temp_file = NamedTemporaryFile(delete=False, suffix=".zip")
        with zipfile.ZipFile(temp_file, "w") as zip_ref:
            for image_name, text_no_impl, _ in results:
                txt_filename = ''.join(image_name.split('.')[:-1]) + ".txt"
                with zip_ref.open(txt_filename, 'w') as file:
                    file.write(text_no_impl.encode())
        
        temp_file.seek(0)
        df = pd.DataFrame([(os.path.basename(f), t) for f, t, _ in results], columns=['Image', 'Tags'])

    return temp_file.name, df

custom_css = """
.output-class { display: none; }
.inferno-slider input[type=range] {
    background: linear-gradient(to right,
        #000004, #1b0c41, #4a0c6b, #781c6d,
        #a52c60, #cf4446, #ed6925, #fb9b06,
        #f7d13d, #fcffa4
    ) !important;
    background-size: 100% 100% !important;
}
#image_container-image {
    width: 100%;
    aspect-ratio: 1 / 1;
    max-height: 100%;
}
#image_container img {
    object-fit: contain !important;
}
"""

with gr.Blocks(css=custom_css) as demo:
    gr.Markdown("""
    ## Joint Tagger Project: JTP-PILOT² Demo **BETA**
    """)
    with gr.Tabs():
        with gr.TabItem("Single Image"):
            original_image_state = gr.State() # stash a copy of the input image
            sorted_tag_score_state = gr.State(value={}) # stash a copy of the input image
            cam_state = gr.State()
            with gr.Row():
                with gr.Column():
                    image = gr.Image(label="Source", sources=['upload', 'clipboard'], type='pil', show_label=False, elem_id="image_container")
                    cam_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.40, label="CAM Threshold", elem_classes="inferno-slider")
                    alpha_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.60, label="CAM Alpha")
                with gr.Column():
                    tag_string = gr.Textbox(label="Tag String")
                    threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Tag Threshold")
                    label_box = gr.Label(label="Tag Predictions", num_top_classes=250, show_label=False)

            image.upload(
                fn=run_classifier,
                inputs=[image, threshold_slider],
                outputs=[tag_string, label_box, original_image_state, sorted_tag_score_state],
                show_progress='minimal'
            )

            image.clear(
                fn=clear_image,
                inputs=[],
                outputs=[tag_string, label_box, original_image_state, sorted_tag_score_state, cam_state]
            )

            threshold_slider.input(
                fn=create_tags,
                inputs=[threshold_slider, sorted_tag_score_state],
                outputs=[tag_string, label_box],
                show_progress='hidden'
            )

            label_box.select(
                fn=cam_inference,
                inputs=[original_image_state, cam_slider, alpha_slider],
                outputs=[image, cam_state],
                show_progress='minimal'
            )

            cam_slider.input(
                fn=create_cam_visualization_pil,
                inputs=[original_image_state, cam_state, alpha_slider, cam_slider],
                outputs=[image],
                show_progress='hidden'
            )

            alpha_slider.input(
                fn=create_cam_visualization_pil,
                inputs=[original_image_state, cam_state, alpha_slider, cam_slider],
                outputs=[image],
                show_progress='hidden'
            )
        
        with gr.TabItem("Multiple Images"):
            with gr.Row():
                with gr.Column():
                    zip_input = gr.File(label="Upload ZIP file", file_types=['.zip'])
                    multi_threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold")
                    process_button = gr.Button("Process Images")
                with gr.Column():
                    zip_output = gr.File(label="Download Tagged Text Files (ZIP)")
                    dataframe_output = gr.Dataframe(label="Image Tags Summary")
            
            process_button.click(
                fn=process_zip,
                inputs=[zip_input, multi_threshold_slider],
                outputs=[zip_output, dataframe_output]
            )
    gr.Markdown("""
    This tagger is designed for use on furry images (though may very well work on out-of-distribution images, potentially with funny results).  A threshold of 0.2 is recommended.  Lower thresholds often turn up more valid tags, but can also result in some amount of hallucinated tags.
    This tagger is the result of joint efforts between members of the RedRocket team, with distinctions given to Thessalo for creating the foundation for this project with his efforts, RedHotTensors for redesigning the process into a second-order method that models information expectation, and drhead for dataset prep, creation of training code and supervision of training runs.
    Special thanks to Minotoro at frosting.ai for providing the compute power for this project.
    """)

if __name__ == "__main__":
    demo.launch()