Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,972 Bytes
43a8c87 37183bc 08a2d0b 37183bc bd1d180 08a2d0b 0cdffb9 bd1d180 08a2d0b 43a8c87 08a2d0b 37183bc bd1d180 08a2d0b 3be737f 08a2d0b e1bf142 08a2d0b e1bf142 08a2d0b bd1d180 70e64be 37183bc 08a2d0b 37183bc bd1d180 37183bc bd1d180 37183bc 0cdffb9 37183bc 69fc921 08a2d0b 37183bc 683b0c2 37183bc bd1d180 37183bc bd1d180 69fc921 37183bc 69fc921 37183bc 69fc921 37183bc bd1d180 08a2d0b d4d4a7d 08a2d0b cb636fa 1e41ca0 08a2d0b d8bb729 08a2d0b d8bb729 08a2d0b d8bb729 08a2d0b 37183bc accdcf1 70e64be accdcf1 08a2d0b 37183bc 08a2d0b 37183bc 08a2d0b 37183bc 08a2d0b 37183bc 08a2d0b 37183bc 08a2d0b 37183bc 08a2d0b 37183bc bd1d180 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
import msgspec
import os
import zipfile
from io import BytesIO
from tempfile import NamedTemporaryFile
import tempfile
import numpy as np
import matplotlib.cm as cm
import gradio as gr
import pandas as pd
from PIL import Image
import safetensors.torch
import spaces
import timm
from timm.models import VisionTransformer
import torch
from torchvision.transforms import transforms
from torchvision.transforms import InterpolationMode
import torchvision.transforms.functional as TF
from torch.utils.data import Dataset, DataLoader
from math import ceil
from typing import Callable
from functools import partial
import spaces.config
from spaces.zero.decorator import P, R
from huggingface_hub import hf_hub_download
def _dynGPU(
fn: Callable[P, R] | None, duration: Callable[P, int], min=10, max=300, step=5
) -> Callable[P, R]:
if not spaces.config.Config.zero_gpu:
return fn
funcs = [
(t, spaces.GPU(duration=t)(lambda *args, **kwargs: fn(*args, **kwargs)))
for t in range(min, max + 1, step)
]
def wrapper(*args, **kwargs):
requirement = duration(*args, **kwargs)
# find the function that satisfies the duration requirement
for t, func in funcs:
if t >= requirement:
gr.Info(f"Acquiring ZeroGPU for {t} seconds")
return func(*args, **kwargs)
# if no function is found, return the last one
gr.Info(f"Acquiring ZeroGPU for {funcs[-1][0]} seconds")
return funcs[-1][1](*args, **kwargs)
return wrapper
def dynGPU(
fn: Callable[P, R] | None = None,
duration: Callable[P, int] = lambda: 60,
min=10,
max=300,
step=5,
) -> Callable[P, R]:
if fn is None:
return partial(_dynGPU, duration=duration, min=min, max=max, step=step)
return _dynGPU(fn, duration, min, max, step)
class Fit(torch.nn.Module):
def __init__(
self,
bounds: tuple[int, int] | int,
interpolation = InterpolationMode.LANCZOS,
grow: bool = True,
pad: float | None = None
):
super().__init__()
self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds
self.interpolation = interpolation
self.grow = grow
self.pad = pad
def forward(self, img: Image) -> Image:
wimg, himg = img.size
hbound, wbound = self.bounds
hscale = hbound / himg
wscale = wbound / wimg
if not self.grow:
hscale = min(hscale, 1.0)
wscale = min(wscale, 1.0)
scale = min(hscale, wscale)
if scale == 1.0:
return img
hnew = min(round(himg * scale), hbound)
wnew = min(round(wimg * scale), wbound)
img = TF.resize(img, (hnew, wnew), self.interpolation)
if self.pad is None:
return img
hpad = hbound - hnew
wpad = wbound - wnew
tpad = hpad // 2
bpad = hpad - tpad
lpad = wpad // 2
rpad = wpad - lpad
return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad)
def __repr__(self) -> str:
return (
f"{self.__class__.__name__}(" +
f"bounds={self.bounds}, " +
f"interpolation={self.interpolation.value}, " +
f"grow={self.grow}, " +
f"pad={self.pad})"
)
class CompositeAlpha(torch.nn.Module):
def __init__(
self,
background: tuple[float, float, float] | float,
):
super().__init__()
self.background = (background, background, background) if isinstance(background, float) else background
self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2)
def forward(self, img: torch.Tensor) -> torch.Tensor:
if img.shape[-3] == 3:
return img
alpha = img[..., 3, None, :, :]
img[..., :3, :, :] *= alpha
background = self.background.expand(-1, img.shape[-2], img.shape[-1])
if background.ndim == 1:
background = background[:, None, None]
elif background.ndim == 2:
background = background[None, :, :]
img[..., :3, :, :] += (1.0 - alpha) * background
return img[..., :3, :, :]
def __repr__(self) -> str:
return (
f"{self.__class__.__name__}(" +
f"background={self.background})"
)
transform = transforms.Compose([
Fit((384, 384)),
transforms.ToTensor(),
CompositeAlpha(0.5),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
transforms.CenterCrop((384, 384)),
])
model = timm.create_model(
"vit_so400m_patch14_siglip_384.webli",
pretrained=False,
num_classes=9083,
) # type: VisionTransformer
class GatedHead(torch.nn.Module):
def __init__(self,
num_features: int,
num_classes: int
):
super().__init__()
self.num_classes = num_classes
self.linear = torch.nn.Linear(num_features, num_classes * 2)
self.act = torch.nn.Sigmoid()
self.gate = torch.nn.Sigmoid()
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.linear(x)
x = self.act(x[:, :self.num_classes]) * self.gate(x[:, self.num_classes:])
return x
model.head = GatedHead(min(model.head.weight.shape), 9083)
cached_model = hf_hub_download(
repo_id="RedRocket/JointTaggerProject",
subfolder="JTP_PILOT2",
filename="JTP_PILOT2-e3-vit_so400m_patch14_siglip_384.safetensors"
)
safetensors.torch.load_model(model, cached_model)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
model.to(device='cuda', dtype=torch.float16, memory_format=torch.channels_last)
model.eval()
with open("tagger_tags.json", "rb") as file:
tags = msgspec.json.decode(file.read(), type=dict[str, int])
for tag in tags.keys():
tags[tag.replace("_", " ")] = tags.pop(tag)
allowed_tags = list(tags.keys())
@spaces.GPU(duration=6)
def run_classifier(image: Image.Image, threshold):
img = image.convert('RGBA')
tensor = transform(img).unsqueeze(0)
with torch.no_grad():
probits = model(tensor)[0] # type: torch.Tensor
values, indices = probits.cpu().topk(250)
tag_score = {allowed_tags[idx.item()]: val.item() for idx, val in zip(indices, values)}
sorted_tag_score = dict(sorted(tag_score.items(), key=lambda item: item[1], reverse=True))
return *create_tags(threshold, sorted_tag_score), img, sorted_tag_score
def create_tags(threshold, sorted_tag_score: dict):
filtered_tag_score = {key: value for key, value in sorted_tag_score.items() if value > threshold}
text_no_impl = ", ".join(filtered_tag_score.keys())
return text_no_impl, filtered_tag_score
def clear_image():
return "", {}, None, {}, None
@spaces.GPU(duration=5)
def cam_inference(img, threshold, alpha, evt: gr.SelectData):
target_tag_index = tags[evt.value]
tensor = transform(img).unsqueeze(0)
gradients = {}
activations = {}
def hook_forward(module, input, output):
activations['value'] = output
def hook_backward(module, grad_in, grad_out):
gradients['value'] = grad_out[0]
handle_forward = model.norm.register_forward_hook(hook_forward)
handle_backward = model.norm.register_full_backward_hook(hook_backward)
probits = model(tensor)[0]
model.zero_grad()
probits[target_tag_index].backward(retain_graph=True)
with torch.no_grad():
patch_grads = gradients.get('value')
patch_acts = activations.get('value')
weights = torch.mean(patch_grads, dim=1).squeeze(0)
cam_1d = torch.einsum('pe,e->p', patch_acts.squeeze(0), weights)
cam_1d = torch.relu(cam_1d)
cam = cam_1d.reshape(27, 27).detach().cpu().numpy()
handle_forward.remove()
handle_backward.remove()
return create_cam_visualization_pil(img, cam, alpha=alpha, vis_threshold=threshold), cam
def create_cam_visualization_pil(image_pil, cam, alpha=0.6, vis_threshold=0.2):
"""
Overlays CAM on image and returns a PIL image.
Args:
image_pil: PIL Image (RGB)
cam: 2D numpy array (activation map)
alpha: float, blending factor
vis_threshold: float, minimum normalized CAM value to show color
Returns:
PIL.Image.Image with overlay
"""
if cam is None:
return image_pil
w, h = image_pil.size
size = max(w, h)
# Normalize CAM to [0, 1]
cam -= cam.min()
cam /= cam.max()
# Create heatmap using matplotlib colormap
colormap = cm.get_cmap('inferno')
cam_rgb = colormap(cam)[:, :, :3] # RGB
# Create alpha channel
cam_alpha = (cam >= vis_threshold).astype(np.float32) * alpha # Alpha mask
cam_rgba = np.dstack((cam_rgb, cam_alpha)) # Shape: (H, W, 4)
# Coarse upscale for CAM output -- keeps "blocky" effect that is truer to what is measured
cam_pil = Image.fromarray((cam_rgba * 255).astype(np.uint8), mode="RGBA")
cam_pil = cam_pil.resize((216,216), resample=Image.Resampling.NEAREST)
# Model uses padded image as input, this matches attention map to input image aspect ratio
cam_pil = cam_pil.resize((size, size), resample=Image.Resampling.BICUBIC)
cam_pil = transforms.CenterCrop((h, w))(cam_pil)
# Composite over original
composite = Image.alpha_composite(image_pil, cam_pil)
return composite
class ImageDataset(Dataset):
def __init__(self, image_files, transform):
self.image_files = image_files
self.transform = transform
def __len__(self):
return len(self.image_files)
def __getitem__(self, idx):
img_path = self.image_files[idx]
img = Image.open(img_path).convert('RGB')
return self.transform(img), os.path.basename(img_path)
def measure_duration(images, threshold) -> int:
return ceil(len(images) / 64) * 5 + 3
@dynGPU(duration=measure_duration)
def process_images(images, threshold):
dataset = ImageDataset(images, transform)
dataloader = DataLoader(dataset, batch_size=64, num_workers=0, pin_memory=True, drop_last=False)
all_results = []
with torch.no_grad():
for batch, filenames in dataloader:
batch = batch.to(device)
probabilities = model(batch)
for i, prob in enumerate(probabilities):
indices = torch.where(prob > threshold)[0]
values = prob[indices]
temp = []
tag_score = dict()
for j in range(indices.size(0)):
tag = allowed_tags[indices[j]]
score = values[j].item()
temp.append([tag, score])
tag_score[tag] = score
tags = ", ".join([t[0] for t in temp])
all_results.append((filenames[i], tags, tag_score))
print(all_results)
return all_results
def is_valid_image(file_path):
try:
with Image.open(file_path) as img:
img.verify()
return True
except:
return False
def process_zip(zip_file, threshold):
if zip_file is None:
return None, None
with tempfile.TemporaryDirectory() as temp_dir:
with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
all_files = []
for root, _, files in os.walk(temp_dir):
for file in files:
all_files.append(os.path.join(root, file))
image_files = [f for f in all_files if is_valid_image(f)]
results = process_images(image_files, threshold)
temp_file = NamedTemporaryFile(delete=False, suffix=".zip")
with zipfile.ZipFile(temp_file, "w") as zip_ref:
for image_name, text_no_impl, _ in results:
txt_filename = ''.join(image_name.split('.')[:-1]) + ".txt"
with zip_ref.open(txt_filename, 'w') as file:
file.write(text_no_impl.encode())
temp_file.seek(0)
df = pd.DataFrame([(os.path.basename(f), t) for f, t, _ in results], columns=['Image', 'Tags'])
return temp_file.name, df
custom_css = """
.output-class { display: none; }
.inferno-slider input[type=range] {
background: linear-gradient(to right,
#000004, #1b0c41, #4a0c6b, #781c6d,
#a52c60, #cf4446, #ed6925, #fb9b06,
#f7d13d, #fcffa4
) !important;
background-size: 100% 100% !important;
}
#image_container-image {
width: 100%;
aspect-ratio: 1 / 1;
max-height: 100%;
}
#image_container img {
object-fit: contain !important;
}
"""
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("""
## Joint Tagger Project: JTP-PILOT² Demo **BETA**
""")
with gr.Tabs():
with gr.TabItem("Single Image"):
original_image_state = gr.State() # stash a copy of the input image
sorted_tag_score_state = gr.State(value={}) # stash a copy of the input image
cam_state = gr.State()
with gr.Row():
with gr.Column():
image = gr.Image(label="Source", sources=['upload', 'clipboard'], type='pil', show_label=False, elem_id="image_container")
cam_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.40, label="CAM Threshold", elem_classes="inferno-slider")
alpha_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.60, label="CAM Alpha")
with gr.Column():
tag_string = gr.Textbox(label="Tag String")
threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Tag Threshold")
label_box = gr.Label(label="Tag Predictions", num_top_classes=250, show_label=False)
image.upload(
fn=run_classifier,
inputs=[image, threshold_slider],
outputs=[tag_string, label_box, original_image_state, sorted_tag_score_state],
show_progress='minimal'
)
image.clear(
fn=clear_image,
inputs=[],
outputs=[tag_string, label_box, original_image_state, sorted_tag_score_state, cam_state]
)
threshold_slider.input(
fn=create_tags,
inputs=[threshold_slider, sorted_tag_score_state],
outputs=[tag_string, label_box],
show_progress='hidden'
)
label_box.select(
fn=cam_inference,
inputs=[original_image_state, cam_slider, alpha_slider],
outputs=[image, cam_state],
show_progress='minimal'
)
cam_slider.input(
fn=create_cam_visualization_pil,
inputs=[original_image_state, cam_state, alpha_slider, cam_slider],
outputs=[image],
show_progress='hidden'
)
alpha_slider.input(
fn=create_cam_visualization_pil,
inputs=[original_image_state, cam_state, alpha_slider, cam_slider],
outputs=[image],
show_progress='hidden'
)
with gr.TabItem("Multiple Images"):
with gr.Row():
with gr.Column():
zip_input = gr.File(label="Upload ZIP file", file_types=['.zip'])
multi_threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold")
process_button = gr.Button("Process Images")
with gr.Column():
zip_output = gr.File(label="Download Tagged Text Files (ZIP)")
dataframe_output = gr.Dataframe(label="Image Tags Summary")
process_button.click(
fn=process_zip,
inputs=[zip_input, multi_threshold_slider],
outputs=[zip_output, dataframe_output]
)
gr.Markdown("""
This tagger is designed for use on furry images (though may very well work on out-of-distribution images, potentially with funny results). A threshold of 0.2 is recommended. Lower thresholds often turn up more valid tags, but can also result in some amount of hallucinated tags.
This tagger is the result of joint efforts between members of the RedRocket team, with distinctions given to Thessalo for creating the foundation for this project with his efforts, RedHotTensors for redesigning the process into a second-order method that models information expectation, and drhead for dataset prep, creation of training code and supervision of training runs.
Special thanks to Minotoro at frosting.ai for providing the compute power for this project.
""")
if __name__ == "__main__":
demo.launch() |