Spaces:
Running
on
Zero
Running
on
Zero
import json | |
from PIL import Image | |
import gradio as gr | |
import torch | |
from torchvision.transforms import transforms | |
from torchvision.transforms import InterpolationMode | |
import torchvision.transforms.functional as TF | |
import spaces | |
import huggingface_hub | |
import timm | |
from timm.models import VisionTransformer | |
import safetensors.torch | |
torch.jit.script = lambda f: f | |
torch.set_grad_enabled(False) | |
class Fit(torch.nn.Module): | |
def __init__( | |
self, | |
bounds: tuple[int, int] | int, | |
interpolation = InterpolationMode.LANCZOS, | |
grow: bool = True, | |
pad: float | None = None | |
): | |
super().__init__() | |
self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds | |
self.interpolation = interpolation | |
self.grow = grow | |
self.pad = pad | |
def forward(self, img: Image) -> Image: | |
wimg, himg = img.size | |
hbound, wbound = self.bounds | |
hscale = hbound / himg | |
wscale = wbound / wimg | |
if not self.grow: | |
hscale = min(hscale, 1.0) | |
wscale = min(wscale, 1.0) | |
scale = min(hscale, wscale) | |
if scale == 1.0: | |
return img | |
hnew = min(round(himg * scale), hbound) | |
wnew = min(round(wimg * scale), wbound) | |
img = TF.resize(img, (hnew, wnew), self.interpolation) | |
if self.pad is None: | |
return img | |
hpad = hbound - hnew | |
wpad = wbound - wnew | |
tpad = hpad // 2 | |
bpad = hpad - tpad | |
lpad = wpad // 2 | |
rpad = wpad - lpad | |
return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad) | |
def __repr__(self) -> str: | |
return ( | |
f"{self.__class__.__name__}(" + | |
f"bounds={self.bounds}, " + | |
f"interpolation={self.interpolation.value}, " + | |
f"grow={self.grow}, " + | |
f"pad={self.pad})" | |
) | |
class CompositeAlpha(torch.nn.Module): | |
def __init__( | |
self, | |
background: tuple[float, float, float] | float, | |
): | |
super().__init__() | |
self.background = (background, background, background) if isinstance(background, float) else background | |
self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2) | |
def forward(self, img: torch.Tensor) -> torch.Tensor: | |
if img.shape[-3] == 3: | |
return img | |
alpha = img[..., 3, None, :, :] | |
img[..., :3, :, :] *= alpha | |
background = self.background.expand(-1, img.shape[-2], img.shape[-1]) | |
if background.ndim == 1: | |
background = background[:, None, None] | |
elif background.ndim == 2: | |
background = background[None, :, :] | |
img[..., :3, :, :] += (1.0 - alpha) * background | |
return img[..., :3, :, :] | |
def __repr__(self) -> str: | |
return ( | |
f"{self.__class__.__name__}(" + | |
f"background={self.background})" | |
) | |
transform = transforms.Compose([ | |
Fit((384, 384)), | |
transforms.ToTensor(), | |
CompositeAlpha(0.5), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), | |
transforms.CenterCrop((384, 384)), | |
]) | |
model = timm.create_model( | |
"vit_so400m_patch14_siglip_384.webli", | |
pretrained=False, | |
num_classes=9083, | |
) # type: VisionTransformer | |
safetensors.torch.load_model(model, "JTP_PILOT-e4-vit_so400m_patch14_siglip_384.safetensors") | |
model.eval() | |
with open("tagger_tags.json", "r") as file: | |
tags = json.load(file) # type: dict | |
allowed_tags = tags.keys() | |
def create_tags(image, threshold): | |
img = image.convert('RGB') | |
tensor = transform(img).unsqueeze(0) | |
with torch.no_grad(): | |
logits = model(tensor) | |
probabilities = torch.nn.functional.sigmoid(logits[0]) | |
indices = torch.where(probabilities > threshold)[0] | |
values = probabilities[indices] | |
temp = [] | |
tag_score = dict() | |
for i in range(indices.size(0)): | |
temp.append([allowed_tags[indices[i]], values[i].item()]) | |
tag_score[allowed_tags[indices[i]]] = values[i].item() | |
temp = [t[0] for t in temp] | |
text_no_impl = ", ".join(temp) | |
return text_no_impl, tag_score | |
with gr.Blocks() as demo: | |
with gr.Tab("Single Image"): | |
gr.Interface( | |
create_tags, | |
inputs=[gr.Image(label="Source", sources=['upload', 'webcam'], type='pil'), gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.30, label="Threshold")], | |
outputs=[ | |
gr.Textbox(label="Tag String"), | |
gr.Label(label="Tag Predictions", num_top_classes=200), | |
], | |
allow_flagging="never", | |
) | |
if __name__ == "__main__": | |
demo.launch() |