Update app.py
Browse files
app.py
CHANGED
@@ -176,8 +176,7 @@ class ImageDataset(Dataset):
|
|
176 |
img_path = self.image_files[idx]
|
177 |
img = Image.open(img_path).convert('RGB')
|
178 |
return self.transform(img), os.path.basename(img_path)
|
179 |
-
|
180 |
-
|
181 |
@spaces.GPU(duration=299)
|
182 |
def process_images(images, threshold):
|
183 |
dataset = ImageDataset(images, transform)
|
@@ -221,24 +220,75 @@ def process_zip(zip_file, threshold):
|
|
221 |
if zip_file is None:
|
222 |
return None, None
|
223 |
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
-
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
return temp_file.name, df
|
243 |
|
244 |
with gr.Blocks(css=".output-class { display: none; }") as demo:
|
@@ -286,6 +336,21 @@ with gr.Blocks(css=".output-class { display: none; }") as demo:
|
|
286 |
inputs=[zip_input, multi_threshold_slider],
|
287 |
outputs=[zip_output, dataframe_output]
|
288 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
if __name__ == "__main__":
|
291 |
demo.queue().launch()
|
|
|
176 |
img_path = self.image_files[idx]
|
177 |
img = Image.open(img_path).convert('RGB')
|
178 |
return self.transform(img), os.path.basename(img_path)
|
179 |
+
|
|
|
180 |
@spaces.GPU(duration=299)
|
181 |
def process_images(images, threshold):
|
182 |
dataset = ImageDataset(images, transform)
|
|
|
220 |
if zip_file is None:
|
221 |
return None, None
|
222 |
|
223 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
224 |
+
with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
|
225 |
+
zip_ref.extractall(temp_dir)
|
226 |
+
|
227 |
+
all_files = [os.path.join(temp_dir, f) for f in os.listdir(temp_dir)]
|
228 |
+
image_files = [f for f in all_files if is_valid_image(f)]
|
229 |
+
results = process_images(image_files, threshold)
|
230 |
+
|
231 |
+
temp_file = NamedTemporaryFile(delete=False, suffix=".zip")
|
232 |
+
with zipfile.ZipFile(temp_file, "w") as zip_ref:
|
233 |
+
for image_name, text_no_impl, _ in results:
|
234 |
+
with zip_ref.open(''.join(image_name.split('.')[:-1]) + ".txt", 'w') as file:
|
235 |
+
file.write(text_no_impl.encode())
|
236 |
+
temp_file.seek(0)
|
237 |
+
df = pd.DataFrame([(os.path.basename(f), t) for f, t, _ in results], columns=['Image', 'Tags'])
|
238 |
|
239 |
+
return temp_file.name, df
|
240 |
+
|
241 |
+
@spaces.GPU(duration=120) # Reduced GPU duration for less wait time...
|
242 |
+
def process_images_light(images, threshold):
|
243 |
+
dataset = ImageDataset(images, transform)
|
244 |
+
|
245 |
+
dataloader = DataLoader(dataset, batch_size=16, num_workers=0, pin_memory=True, drop_last=False)
|
246 |
|
247 |
+
all_results = []
|
248 |
+
|
249 |
+
with torch.no_grad():
|
250 |
+
for batch, filenames in dataloader:
|
251 |
+
|
252 |
+
batch = batch.to(device)
|
253 |
+
with torch.no_grad():
|
254 |
+
logits = model(batch)
|
255 |
+
probabilities = torch.nn.functional.sigmoid(logits)
|
256 |
+
|
257 |
+
for i, prob in enumerate(probabilities):
|
258 |
+
indices = torch.where(prob > threshold)[0]
|
259 |
+
values = prob[indices]
|
260 |
+
|
261 |
+
temp = []
|
262 |
+
tag_score = dict()
|
263 |
+
for j in range(indices.size(0)):
|
264 |
+
temp.append([allowed_tags[indices[j]], values[j].item()])
|
265 |
+
tag_score[allowed_tags[indices[j]]] = values[j].item()
|
266 |
+
|
267 |
+
tags = ", ".join([t[0] for t in temp])
|
268 |
+
all_results.append((filenames[i], tags, tag_score))
|
269 |
+
|
270 |
+
return all_results
|
271 |
+
|
272 |
+
def process_zip_light(zip_file, threshold):
|
273 |
+
if zip_file is None:
|
274 |
+
return None, None
|
275 |
+
|
276 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
277 |
+
with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
|
278 |
+
zip_ref.extractall(temp_dir)
|
279 |
+
|
280 |
+
all_files = [os.path.join(temp_dir, f) for f in os.listdir(temp_dir)]
|
281 |
+
image_files = [f for f in all_files if is_valid_image(f)]
|
282 |
+
results = process_images_light(image_files, threshold)
|
283 |
|
284 |
+
temp_file = NamedTemporaryFile(delete=False, suffix=".zip")
|
285 |
+
with zipfile.ZipFile(temp_file, "w") as zip_ref:
|
286 |
+
for image_name, text_no_impl, _ in results:
|
287 |
+
with zip_ref.open(''.join(image_name.split('.')[:-1]) + ".txt", 'w') as file:
|
288 |
+
file.write(text_no_impl.encode())
|
289 |
+
temp_file.seek(0)
|
290 |
+
df = pd.DataFrame([(os.path.basename(f), t) for f, t, _ in results], columns=['Image', 'Tags'])
|
291 |
+
|
292 |
return temp_file.name, df
|
293 |
|
294 |
with gr.Blocks(css=".output-class { display: none; }") as demo:
|
|
|
336 |
inputs=[zip_input, multi_threshold_slider],
|
337 |
outputs=[zip_output, dataframe_output]
|
338 |
)
|
339 |
+
with gr.TabItem("Multiple Images (Light)"):
|
340 |
+
with gr.Row():
|
341 |
+
with gr.Column():
|
342 |
+
zip_input_light = gr.File(label="Upload ZIP file", file_types=['.zip'])
|
343 |
+
multi_threshold_slider_light = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold")
|
344 |
+
process_button_light = gr.Button("Process Images (Light)")
|
345 |
+
with gr.Column():
|
346 |
+
zip_output_light = gr.File(label="Download Tagged Text Files (ZIP)")
|
347 |
+
dataframe_output_light = gr.Dataframe(label="Image Tags Summary")
|
348 |
+
|
349 |
+
process_button_light.click(
|
350 |
+
fn=process_zip_light,
|
351 |
+
inputs=[zip_input_light, multi_threshold_slider_light],
|
352 |
+
outputs=[zip_output_light, dataframe_output_light]
|
353 |
+
)
|
354 |
|
355 |
if __name__ == "__main__":
|
356 |
demo.queue().launch()
|