import json import os import zipfile from io import BytesIO from tempfile import NamedTemporaryFile import tempfile import gradio as gr import pandas as pd from PIL import Image import safetensors.torch import spaces import timm from timm.models import VisionTransformer import torch from torchvision.transforms import transforms from torchvision.transforms import InterpolationMode import torchvision.transforms.functional as TF from torch.utils.data import Dataset, DataLoader torch.set_grad_enabled(False) class Fit(torch.nn.Module): def __init__( self, bounds: tuple[int, int] | int, interpolation = InterpolationMode.LANCZOS, grow: bool = True, pad: float | None = None ): super().__init__() self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds self.interpolation = interpolation self.grow = grow self.pad = pad def forward(self, img: Image) -> Image: wimg, himg = img.size hbound, wbound = self.bounds hscale = hbound / himg wscale = wbound / wimg if not self.grow: hscale = min(hscale, 1.0) wscale = min(wscale, 1.0) scale = min(hscale, wscale) if scale == 1.0: return img hnew = min(round(himg * scale), hbound) wnew = min(round(wimg * scale), wbound) img = TF.resize(img, (hnew, wnew), self.interpolation) if self.pad is None: return img hpad = hbound - hnew wpad = wbound - wnew tpad = hpad // 2 bpad = hpad - tpad lpad = wpad // 2 rpad = wpad - lpad return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad) def __repr__(self) -> str: return ( f"{self.__class__.__name__}(" + f"bounds={self.bounds}, " + f"interpolation={self.interpolation.value}, " + f"grow={self.grow}, " + f"pad={self.pad})" ) class CompositeAlpha(torch.nn.Module): def __init__( self, background: tuple[float, float, float] | float, ): super().__init__() self.background = (background, background, background) if isinstance(background, float) else background self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2) def forward(self, img: torch.Tensor) -> torch.Tensor: if img.shape[-3] == 3: return img alpha = img[..., 3, None, :, :] img[..., :3, :, :] *= alpha background = self.background.expand(-1, img.shape[-2], img.shape[-1]) if background.ndim == 1: background = background[:, None, None] elif background.ndim == 2: background = background[None, :, :] img[..., :3, :, :] += (1.0 - alpha) * background return img[..., :3, :, :] def __repr__(self) -> str: return ( f"{self.__class__.__name__}(" + f"background={self.background})" ) transform = transforms.Compose([ Fit((384, 384)), transforms.ToTensor(), CompositeAlpha(0.5), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), transforms.CenterCrop((384, 384)), ]) model = timm.create_model( "vit_so400m_patch14_siglip_384.webli", pretrained=False, num_classes=9083, ) # type: VisionTransformer safetensors.torch.load_model(model, "JTP_PILOT-e4-vit_so400m_patch14_siglip_384.safetensors") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) model.eval() with open("tagger_tags.json", "r") as file: tags = json.load(file) # type: dict allowed_tags = list(tags.keys()) for idx, tag in enumerate(allowed_tags): allowed_tags[idx] = tag.replace("_", " ") sorted_tag_score = {} @spaces.GPU(duration=9) def run_classifier(image, threshold): global sorted_tag_score img = image.convert('RGB') tensor = transform(img).unsqueeze(0).to(device) with torch.no_grad(): logits = model(tensor) probabilities = torch.nn.functional.sigmoid(logits[0]) indices = torch.topk(probabilities, 250).indices values = probabilities[indices] tag_score = dict() for i in range(indices.size(0)): tag_score[allowed_tags[indices[i]]] = values[i].item() sorted_tag_score = dict(sorted(tag_score.items(), key=lambda item: item[1], reverse=True)) return create_tags(threshold) def create_tags(threshold): global sorted_tag_score filtered_tag_score = {key: value for key, value in sorted_tag_score.items() if value > threshold} text_no_impl = ", ".join(filtered_tag_score.keys()) return text_no_impl, filtered_tag_score class ImageDataset(Dataset): def __init__(self, image_files, transform): self.image_files = image_files self.transform = transform def __len__(self): return len(self.image_files) def __getitem__(self, idx): img_path = self.image_files[idx] img = Image.open(img_path).convert('RGB') return self.transform(img), os.path.basename(img_path) @spaces.GPU(duration=299) def process_images(images, threshold): dataset = ImageDataset(images, transform) dataloader = DataLoader(dataset, batch_size=64, num_workers=0, pin_memory=True, drop_last=False) all_results = [] with torch.no_grad(): for batch, filenames in dataloader: batch = batch.to(device) with torch.no_grad(): logits = model(batch) probabilities = torch.nn.functional.sigmoid(logits) for i, prob in enumerate(probabilities): indices = torch.where(prob > threshold)[0] values = prob[indices] temp = [] tag_score = dict() for j in range(indices.size(0)): temp.append([allowed_tags[indices[j]], values[j].item()]) tag_score[allowed_tags[indices[j]]] = values[j].item() tags = ", ".join([t[0] for t in temp]) all_results.append((filenames[i], tags, tag_score)) return all_results def is_valid_image(file_path): try: with Image.open(file_path) as img: img.verify() return True except: return False def process_zip(zip_file, threshold): if zip_file is None: return None, None with tempfile.TemporaryDirectory() as temp_dir: with zipfile.ZipFile(zip_file.name, 'r') as zip_ref: zip_ref.extractall(temp_dir) all_files = [os.path.join(temp_dir, f) for f in os.listdir(temp_dir)] image_files = [f for f in all_files if is_valid_image(f)] results = process_images(image_files, threshold) temp_file = NamedTemporaryFile(delete=False, suffix=".zip") with zipfile.ZipFile(temp_file, "w") as zip_ref: for image_name, text_no_impl, _ in results: with zip_ref.open(''.join(image_name.split('.')[:-1]) + ".txt", 'w') as file: file.write(text_no_impl.encode()) temp_file.seek(0) df = pd.DataFrame([(os.path.basename(f), t) for f, t, _ in results], columns=['Image', 'Tags']) return temp_file.name, df @spaces.GPU(duration=120) # Reduced GPU duration for less wait time... def process_images_light(images, threshold): dataset = ImageDataset(images, transform) dataloader = DataLoader(dataset, batch_size=32, num_workers=0, pin_memory=True, drop_last=False) all_results = [] with torch.no_grad(): for batch, filenames in dataloader: batch = batch.to(device) with torch.no_grad(): logits = model(batch) probabilities = torch.nn.functional.sigmoid(logits) for i, prob in enumerate(probabilities): indices = torch.where(prob > threshold)[0] values = prob[indices] temp = [] tag_score = dict() for j in range(indices.size(0)): temp.append([allowed_tags[indices[j]], values[j].item()]) tag_score[allowed_tags[indices[j]]] = values[j].item() tags = ", ".join([t[0] for t in temp]) all_results.append((filenames[i], tags, tag_score)) return all_results def process_zip_light(zip_file, threshold): if zip_file is None: return None, None with tempfile.TemporaryDirectory() as temp_dir: with zipfile.ZipFile(zip_file.name, 'r') as zip_ref: zip_ref.extractall(temp_dir) all_files = [os.path.join(temp_dir, f) for f in os.listdir(temp_dir)] image_files = [f for f in all_files if is_valid_image(f)] results = process_images_light(image_files, threshold) temp_file = NamedTemporaryFile(delete=False, suffix=".zip") with zipfile.ZipFile(temp_file, "w") as zip_ref: for image_name, text_no_impl, _ in results: with zip_ref.open(''.join(image_name.split('.')[:-1]) + ".txt", 'w') as file: file.write(text_no_impl.encode()) temp_file.seek(0) df = pd.DataFrame([(os.path.basename(f), t) for f, t, _ in results], columns=['Image', 'Tags']) return temp_file.name, df with gr.Blocks(css=".output-class { display: none; }") as demo: gr.Markdown(""" ## Joint Tagger Project: PILOT Demo This tagger is designed for use on furry images (though may very well work on out-of-distribution images, potentially with funny results). A threshold of 0.2 is recommended. Lower thresholds often turn up more valid tags, but can also result in some amount of hallucinated tags. This tagger is the result of joint efforts between members of the RedRocket team. Special thanks to Minotoro at frosting.ai for providing the compute power for this project. Usage Note for batch tagging: the normal version is limited to 300s and uses batch size 64 the light version is limited to 120s with batch size 32 if your image count is low use the light version for lower gpu wait time (most of the time you instantly get a gpu anyway) """) with gr.Tabs(): with gr.TabItem("Single Image"): with gr.Row(): with gr.Column(): image_input = gr.Image(label="Source", sources=['upload'], type='pil', height=512, show_label=False) threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold") with gr.Column(): tag_string = gr.Textbox(label="Tag String") label_box = gr.Label(label="Tag Predictions", num_top_classes=250, show_label=False) image_input.upload( fn=run_classifier, inputs=[image_input, threshold_slider], outputs=[tag_string, label_box] ) threshold_slider.input( fn=create_tags, inputs=[threshold_slider], outputs=[tag_string, label_box] ) with gr.TabItem("Multiple Images"): with gr.Row(): with gr.Column(): zip_input = gr.File(label="Upload ZIP file", file_types=['.zip']) multi_threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold") process_button = gr.Button("Process Images") with gr.Column(): zip_output = gr.File(label="Download Tagged Text Files (ZIP)") dataframe_output = gr.Dataframe(label="Image Tags Summary") process_button.click( fn=process_zip, inputs=[zip_input, multi_threshold_slider], outputs=[zip_output, dataframe_output] ) with gr.TabItem("Multiple Images (Light)"): with gr.Row(): with gr.Column(): zip_input_light = gr.File(label="Upload ZIP file", file_types=['.zip']) multi_threshold_slider_light = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold") process_button_light = gr.Button("Process Images (Light)") with gr.Column(): zip_output_light = gr.File(label="Download Tagged Text Files (ZIP)") dataframe_output_light = gr.Dataframe(label="Image Tags Summary") process_button_light.click( fn=process_zip_light, inputs=[zip_input_light, multi_threshold_slider_light], outputs=[zip_output_light, dataframe_output_light] ) if __name__ == "__main__": demo.queue().launch()