File size: 5,039 Bytes
14e17ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import streamlit as st
from transformers import pipeline
import pickle
import os
import pandas as pd
import seaborn as sns
import ast
import string
import re

st.set_page_config(
	page_title="Offer Recommender",
	layout="wide"
)

pipe = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli")
dire = "DS_NLP_search_data"

@st.cache_data
def get_processed_offers():
	processed_offers = pd.read_csv(os.path.join(dire, "processed_offers.csv"))
	processed_offers["CATEGORY"] = processed_offers["CATEGORY"].map(ast.literal_eval)
	return processed_offers

@st.cache_data
def get_categories_data():
	cats = pd.read_csv(os.path.join(dire, "categories.csv"))
	return cats

@st.cache_data
def get_offers_data():
	offers = pd.read_csv(os.path.join(dire, "offer_retailer.csv"))
	return offers

@st.cache_data
def get_categories(cats_):
	categories = list(cats_["IS_CHILD_CATEGORY_TO"].unique())
	for x in ["Mature"]:
		if x in categories:
			categories.remove(x)
	return categories

def get_confidence_charts(results):
	df = (
		pd.DataFrame({"Category": results["labels"], "probability": results["scores"]})
		.sort_values(by="probability", ascending=False)
		.reset_index(drop=True)
	)

	df.index += 1

	# Add styling
	cmGreen = sns.light_palette("blue", as_cmap=True)
	cmRed = sns.light_palette("red", as_cmap=True)
	df = df.style.background_gradient(
		cmap=cmGreen,
		subset=[
			"probability",
		],
	)


	format_dictionary = {
		"Score": "{:.1%}",
	}

	df = df.format(format_dictionary)

	return df


def check_in_offer(search_str, offer_rets):
	offers = []
	# print(offer_rets)
	for i in range(len(offer_rets)):
		offer_str = offer_rets.iloc[i]["OFFER"]
		# print(offer_str)
		parsed_str = offer_str.lower().translate(str.maketrans('', '', string.punctuation))
		parsed_str = re.sub('[^a-zA-Z0-9 \n\.]', '', parsed_str)
		# print(parsed_str)
		if search_str.lower() in parsed_str.split(" "):
		  offers.append(offer_str)
	df = pd.DataFrame({"OFFER":offers})
	# print(df)
	return df

def is_retailer(search_str, threshold=0.5):
	processed_search_str = search_str.lower().capitalize()
	labels = pipe(processed_search_str,
	  candidate_labels=["brand", "retailer", "item"],
	)

	return labels["labels"][0] == "retailer" and labels["scores"][0] > threshold

@st.cache
def get_prod_categories():
	retail_mapping = {}
	for retailer in list(offer_rets["RETAILER"].unique()):
		query_direct_retail = complete_df[complete_df["RETAILER"] == retailer]
		prod_cats = query_direct_retail["PRODUCT_CATEGORY"].unique()
		retail_mapping[retailer] = prod_cats
	return retail_mapping


def get_most_overlap(retailer, offer_rets, retail_mapping, top_n=3):
	overlaps = {}

	for key, value in retail_mapping.items():
		if key != retailer.upper():
			overlap = set(value).intersection(set(retail_mapping[retailer.upper()]))
			overlaps[key] = len(overlap)

	sorted_overlaps = dict(sorted(overlaps.items(), key=lambda x:x[1], reverse=True))

	related_retailers =  list({k:sorted_overlaps[k] for k in list(sorted_overlaps)[:top_n]}.keys())
	offers = list(offer_rets[offer_rets["RETAILER"].isin(related_retailers)]["OFFER"])
	df = pd.DataFrame({"OFFERS": offers})
	return df

def perform_cat_inference(search_str, categories, cats, processed_offers):
	labels = pipe(search_str,
		candidate_labels=categories,
	)
	print(labels)
	# labels = [l for i, l in enumerate(labels["labels"]) if labels["scores"][i] > 0.20]
	filtered_cats = list(cats[cats["IS_CHILD_CATEGORY_TO"].isin(labels["labels"][:3])]["PRODUCT_CATEGORY"].unique())
	labels_2 = pipe(search_str,
		candidate_labels=filtered_cats,
	)
	print(labels_2)
	top_labels = labels_2["labels"][:3]



	print(top_labels)
	offers = processed_offers[processed_offers["CATEGORY"].apply(lambda x: bool(set(x) & set(top_labels)))]["OFFER"].reset_index()

	return offers, labels, labels_2

def main():
	col_1, col_2, col_3 = st.columns(3)
	search_str = col_2.text_input("Enter a retailer, brand, or category").capitalize()
	processed_offers = get_processed_offers()
	cats = get_categories_data()
	offer_rets = get_offers_data()
	categories = get_categories(cats)
	# retail_mapping = get_prod_categories()

	if col_2.button("Search", type="primary"):
		retail = is_retailer(search_str)
		direct_offers = check_in_offer(search_str, offer_rets)

		if retail:
			col_2.table(direct_offers)
			# related_offers = get_most_overlap(retailer, offer_rets, retail_mapping, top_n=3)
			# col_2.table(related_offers[~related_offers["OFFER"].isin(list(direct_offers["OFFER"]))])

		else:
			col_2.table(direct_offers)
			related_offers, labels_1, labels_2 = perform_cat_inference(search_str, categories, cats, processed_offers) 
			
			col_2.table(related_offers[~related_offers["OFFER"].isin(list(direct_offers["OFFER"]))])
			col_2.table(pd.DataFrame({"labels": labels_1["labels"][:5], "scores": labels_1["scores"][:5]}))
			col_2.table(pd.DataFrame({"labels": labels_2["labels"][:5], "scores": labels_2["scores"][:5]}))
			# df = get_confidence_charts(labels_2)
			# st.table(df)
if __name__ == "__main__":

	main()