File size: 4,367 Bytes
14e17ef ee79db1 14e17ef ee79db1 14e17ef ee79db1 14e17ef ee79db1 14e17ef ee79db1 14e17ef ee79db1 14e17ef ee79db1 14e17ef ee79db1 14e17ef ee79db1 14e17ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import streamlit as st
from transformers import pipeline
import pickle
import os
import pandas as pd
# import seaborn as sns
import ast
import string
import re
from sentence_transformers import SentenceTransformer, util
st.set_page_config(
page_title="Offer Recommender",
layout="wide"
)
pipe = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli")
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
dire = "DS_NLP_search_data"
@st.cache_data
def get_processed_offers():
processed_offers = pd.read_csv(os.path.join(dire, "processed_offers.csv"))
processed_offers["CATEGORY"] = processed_offers["CATEGORY"].map(ast.literal_eval)
return processed_offers
@st.cache_data
def get_categories_data():
cats = pd.read_csv(os.path.join(dire, "categories.csv"))
return cats
@st.cache_data
def get_offers_data():
offers = pd.read_csv(os.path.join(dire, "offer_retailer.csv"))
return offers
@st.cache_data
def get_categories(cats_):
categories = list(cats_["IS_CHILD_CATEGORY_TO"].unique())
for x in ["Mature"]:
if x in categories:
categories.remove(x)
return categories
def check_in_offer(search_str, offer_rets):
offers = []
# print(offer_rets)
for i in range(len(offer_rets)):
offer_str = offer_rets.iloc[i]["OFFER"]
# print(offer_str)
parsed_str = offer_str.lower().translate(str.maketrans('', '', string.punctuation))
parsed_str = re.sub('[^a-zA-Z0-9 \n\.]', '', parsed_str)
# print(parsed_str)
if search_str.lower() in parsed_str.split(" "):
offers.append(offer_str)
df = pd.DataFrame({"OFFER":offers})
# print(df)
return df
def is_retailer(search_str, threshold=0.5):
processed_search_str = search_str.lower().capitalize()
labels = pipe(processed_search_str,
candidate_labels=["brand", "retailer", "item"],
)
return labels["labels"][0] == "retailer" and labels["scores"][0] > threshold
def perform_cat_inference(search_str, categories, cats, processed_offers):
labels = pipe(search_str,
candidate_labels=categories,
)
print(labels)
# labels = [l for i, l in enumerate(labels["labels"]) if labels["scores"][i] > 0.20]
filtered_cats = list(cats[cats["IS_CHILD_CATEGORY_TO"].isin(labels["labels"][:3])]["PRODUCT_CATEGORY"].unique())
labels_2 = pipe(search_str,
candidate_labels=filtered_cats,
)
print(labels_2)
top_labels = labels_2["labels"][:3]
print(top_labels)
offers = processed_offers[processed_offers["CATEGORY"].apply(lambda x: bool(set(x) & set(top_labels)))]["OFFER"].reset_index()
return offers, labels, labels_2
def sort_by_similarity(search_str, related_offers):
temp_dict = {}
embedding_1 = model.encode(search_str, convert_to_tensor=True)
for offer in list(related_offers["OFFER"]):
embedding_2 = model.encode(offer, convert_to_tensor=True)
temp_dict[offer] = float(util.pytorch_cos_sim(embedding_1, embedding_2))
sorted_dict = dict(sorted(temp_dict.items(), key=lambda x : x[1], reverse=True))
# casted_scores = list(map(lambda x : int(x), ))
df = pd.DataFrame({"OFFER":list(sorted_dict.keys())[:20], "scores":list(sorted_dict.values())[:20]})
return df
def main():
col_1, col_2, col_3 = st.columns(3)
search_str = col_2.text_input("Enter a retailer, brand, or category").capitalize()
processed_offers = get_processed_offers()
cats = get_categories_data()
offer_rets = get_offers_data()
categories = get_categories(cats)
# retail_mapping = get_prod_categories()
if col_2.button("Search", type="primary"):
retail = is_retailer(search_str)
direct_offers = check_in_offer(search_str, offer_rets)
col_2.write("Directly related offers")
col_2.table(direct_offers)
if retail:
related_offers = offer_rets[~offer_rets["OFFER"].isin(list(direct_offers["OFFER"]))]
else:
related_offers, labels_1, labels_2 = perform_cat_inference(search_str, categories, cats, processed_offers)
related_offers = related_offers[~related_offers["OFFER"].isin(list(direct_offers["OFFER"]))]
col_2.table(pd.DataFrame({"labels": labels_1["labels"][:5], "scores": labels_1["scores"][:5]}))
col_2.table(pd.DataFrame({"labels": labels_2["labels"][:5], "scores": labels_2["scores"][:5]}))
# df = get_confidence_charts(labels_2)
# st.table(df)
col_2.write("Other related offers")
sorted_offers = sort_by_similarity(search_str, related_offers)
col_2.table(sorted_offers)
if __name__ == "__main__":
main()
|