File size: 1,142 Bytes
662609f
a84048e
eb357c6
08b3c57
7a4be7f
 
66a8af7
 
 
7a4be7f
08b3c57
 
 
7a4be7f
eb357c6
d882530
eb357c6
 
37ee6de
66a8af7
 
 
 
7a4be7f
66a8af7
a84048e
7921e85
66a8af7
 
 
08b3c57
66a8af7
b636da7
7a4be7f
252a108
3c39bfa
93f3ed2
7a4be7f
93f3ed2
7a4be7f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio_client
from gradio_client import Client, file
from urllib.parse import quote
from huggingface_hub import InferenceClient
import numpy as np
import gradio as gr
hfclient = InferenceClient()
grclient = Client("fancyfeast/joy-caption-alpha-two")

def generate_img(prompt):


    return client.text_to_image(prompt)

def pollinations_url_seedless(a, width=512, height=512):
        urlprompt=quote(str(a))
        url=f"https://image.pollinations.ai/prompt/{urlprompt}?width={width}&height={height}"
        return url





def interrogate(img):
    result = grclient.predict(
		input_image=file(img),
		name_input="Hello!!",
		custom_prompt="Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it very long.",
		api_name="/stream_chat"
)

    return result[1]
def rountrip(img):
    prompt=interrogate(img)
    print(prompt)
    url=pollinations_url_seedless(prompt)
    return prompt,url

demo = gr.Interface(rountrip, gr.Image(type= 'filepath'),["textbox",gr.Image(label="pollination")])
demo.launch()