Last commit not found
import streamlit as st | |
import torch | |
from sentence_transformers import SentenceTransformer, util | |
#from spellchecker import SpellChecker | |
import pickle | |
import re | |
# Load the pre-trained SentenceTransformer model | |
model = SentenceTransformer('neuml/pubmedbert-base-embeddings') | |
# Load stored data | |
with open("embeddings_1.pkl", "rb") as fIn: | |
stored_data = pickle.load(fIn) | |
stored_embeddings = stored_data["embeddings"] | |
def validate_input(input_string): | |
# Regular expression pattern to match letters and numbers, or letters only | |
pattern = r'^[a-zA-Z0-9]+$|^[a-zA-Z]+$' | |
# Check if input contains at least one non-numeric character | |
if re.match(pattern, input_string): | |
return True | |
else: | |
return False | |
# Define the function for mapping code | |
def mapping_code(user_input): | |
emb1 = model.encode(user_input.lower()) | |
similarities = [] | |
for sentence in stored_embeddings: | |
similarity = util.cos_sim(sentence, emb1) | |
similarities.append(similarity) | |
# Filter results with similarity scores above 0.70 | |
result = [(code, desc, sim) for (code, desc, sim) in zip(stored_data["SBS_code"], stored_data["Description"], similarities)] | |
# Sort results by similarity scores | |
result.sort(key=lambda x: x[2], reverse=True) | |
num_results = min(5, len(result)) | |
# Return top 5 entries with 'code', 'description', and 'similarity_score' | |
top_5_results = [] | |
if num_results > 0: | |
for i in range(num_results): | |
code, description, similarity_score = result[i] | |
top_5_results.append({"Code": code, "Description": description, "Similarity Score": similarity_score}) | |
else: | |
top_5_results.append({"Code": "", "Description": "No match", "Similarity Score": 0.0}) | |
return top_5_results | |
# Streamlit frontend interface | |
import streamlit as st | |
def main(): | |
st.title("CPT Description Mapping") | |
st.markdown("<font color='red'>**⚠️ Please ensure the accuracy of your input spellings.**</font>", unsafe_allow_html=True) | |
st.markdown("<font color='blue'>**💡 Note:** Please note that the similarity scores provided are not indicative of accuracy. Top 5 code descriptions provided should be verified with CPT descriptions by the user.</font>", unsafe_allow_html=True) | |
# user_slider_input_number = st.sidebar.slider('Select similarity threshold', 0.0, 1.0, 0.7, 0.01, key='slider1', help='Adjust the similarity threshold') | |
# Input text box for user input | |
user_input = st.text_input("Enter CPT description:", placeholder="Please enter a full description for better search results.") | |
# Button to trigger mapping | |
if st.button("Map"): | |
if not user_input.strip(): # Check if input is empty or contains only whitespace | |
st.error("Input box cannot be empty.") | |
elif validate_input(user_input): | |
st.warning("Please input correct description containing only letters and numbers, or letters only.") | |
else: | |
st.write("Please wait for a moment .... ") | |
# Call backend function to get mapping results | |
try: | |
mapping_results = mapping_code(user_input) # user_slider_input_number | |
# Display top 5 similar sentences | |
st.write("Top 5 similar sentences:") | |
for i, result in enumerate(mapping_results, 1): | |
st.write(f"{i}. Code: {result['Code']}, Description: {result['Description']}, Similarity Score: {float(result['Similarity Score']):.4f}") | |
except ValueError as e: | |
st.error(str(e)) | |
if __name__ == "__main__": | |
main() | |