Update app.py
Browse filesImproved App version 2
app.py
CHANGED
@@ -1,70 +1,65 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
-
from sentence_transformers import SentenceTransformer,util
|
4 |
-
|
5 |
-
import pandas as pd
|
6 |
-
import numpy as np
|
7 |
import pickle
|
8 |
|
9 |
-
|
10 |
# Load the pre-trained SentenceTransformer model
|
11 |
-
#pipeline = pipeline(task="Sentence Similarity", model="all-MiniLM-L6-v2")
|
12 |
model = SentenceTransformer('neuml/pubmedbert-base-embeddings')
|
13 |
-
|
|
|
14 |
with open("embeddings_1.pkl", "rb") as fIn:
|
15 |
stored_data = pickle.load(fIn)
|
16 |
-
stored_code = stored_data["SBS_code"]
|
17 |
-
stored_sentences = stored_data["Description"]
|
18 |
stored_embeddings = stored_data["embeddings"]
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Define the function for mapping code
|
23 |
def mapping_code(user_input):
|
|
|
|
|
24 |
emb1 = model.encode(user_input.lower())
|
25 |
-
similarities = []
|
26 |
-
for sentence in stored_embeddings:
|
27 |
-
similarity = util.cos_sim(sentence, emb1)
|
28 |
-
similarities.append(similarity)
|
29 |
-
|
30 |
# Combine similarity scores with 'code' and 'description'
|
31 |
-
result =
|
32 |
-
|
33 |
# Sort results by similarity scores
|
34 |
result.sort(key=lambda x: x[2], reverse=True)
|
35 |
-
|
36 |
-
num_results = min(5, len(result))
|
37 |
-
|
38 |
# Return top 5 entries with 'code', 'description', and 'similarity_score'
|
39 |
-
|
40 |
-
|
41 |
-
for i in range(num_results):
|
42 |
-
code, description, similarity_score = result[i]
|
43 |
-
top_5_results.append({"Code": code, "Description": description, "Similarity Score": similarity_score})
|
44 |
-
else:
|
45 |
-
top_5_results.append({"Code": "", "Description": "No similar sentences found", "Similarity Score": 0.0})
|
46 |
-
|
47 |
return top_5_results
|
|
|
48 |
# Streamlit frontend interface
|
49 |
def main():
|
50 |
st.title("CPT Description Mapping")
|
51 |
-
|
52 |
# Input text box for user input
|
53 |
-
user_input = st.text_input("Enter CPT description:")
|
54 |
-
|
55 |
# Button to trigger mapping
|
56 |
if st.button("Map"):
|
57 |
-
if user_input:
|
|
|
|
|
58 |
st.write("Please wait for a moment .... ")
|
59 |
-
|
60 |
# Call backend function to get mapping results
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
if __name__ == "__main__":
|
70 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
+
from sentence_transformers import SentenceTransformer, util
|
4 |
+
from textblob import SpellChecker
|
|
|
|
|
5 |
import pickle
|
6 |
|
|
|
7 |
# Load the pre-trained SentenceTransformer model
|
|
|
8 |
model = SentenceTransformer('neuml/pubmedbert-base-embeddings')
|
9 |
+
|
10 |
+
# Load stored data
|
11 |
with open("embeddings_1.pkl", "rb") as fIn:
|
12 |
stored_data = pickle.load(fIn)
|
|
|
|
|
13 |
stored_embeddings = stored_data["embeddings"]
|
14 |
|
15 |
+
def check_misspelled_words(user_input):
|
16 |
+
spell = SpellChecker()
|
17 |
+
# Tokenize the input into words
|
18 |
+
words = user_input.split()
|
19 |
+
# Get a list of misspelled words
|
20 |
+
misspelled = spell.unknown(words)
|
21 |
+
return misspelled
|
22 |
|
23 |
# Define the function for mapping code
|
24 |
def mapping_code(user_input):
|
25 |
+
if len(user_input.split()) < 5: # Check if sentence has less than 5 words
|
26 |
+
raise ValueError("Input sentence should be at least 5 words long.")
|
27 |
emb1 = model.encode(user_input.lower())
|
28 |
+
similarities = util.pytorch_cos_sim(emb1, stored_embeddings)[0]
|
|
|
|
|
|
|
|
|
29 |
# Combine similarity scores with 'code' and 'description'
|
30 |
+
result = [(code, description, float(sim)) for code, description, sim in zip(stored_data["SBS_code"], stored_data["Description"], similarities)]
|
|
|
31 |
# Sort results by similarity scores
|
32 |
result.sort(key=lambda x: x[2], reverse=True)
|
|
|
|
|
|
|
33 |
# Return top 5 entries with 'code', 'description', and 'similarity_score'
|
34 |
+
num_results = min(5, len(result))
|
35 |
+
top_5_results = [{"Code": code, "Description": description, "Similarity Score": sim} for code, description, sim in result[:num_results]]
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
return top_5_results
|
37 |
+
|
38 |
# Streamlit frontend interface
|
39 |
def main():
|
40 |
st.title("CPT Description Mapping")
|
|
|
41 |
# Input text box for user input
|
42 |
+
user_input = st.text_input("Enter CPT description:", placeholder="Please enter a full description for better search results.")
|
|
|
43 |
# Button to trigger mapping
|
44 |
if st.button("Map"):
|
45 |
+
if not user_input.strip(): # Check if input is empty or contains only whitespace
|
46 |
+
st.error("Input box cannot be empty.")
|
47 |
+
else:
|
48 |
st.write("Please wait for a moment .... ")
|
|
|
49 |
# Call backend function to get mapping results
|
50 |
+
try:
|
51 |
+
misspelled_words = check_misspelled_words(user_input)
|
52 |
+
if misspelled_words:
|
53 |
+
st.write("Please enter a detailed correct full description")
|
54 |
+
st.write(misspelled_words)
|
55 |
+
else:
|
56 |
+
mapping_results = mapping_code(user_input)
|
57 |
+
# Display top 5 similar sentences
|
58 |
+
st.write("Top 5 similar sentences:")
|
59 |
+
for i, result in enumerate(mapping_results, 1):
|
60 |
+
st.write(f"{i}. Code: {result['Code']}, Description: {result['Description']}, Similarity Score: {result['Similarity Score']:.4f}")
|
61 |
+
except ValueError as e:
|
62 |
+
st.error(str(e))
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
main()
|