ceejaytheanalyst commited on
Commit
1253b18
·
verified ·
1 Parent(s): 3401e40

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -70
app.py DELETED
@@ -1,70 +0,0 @@
1
- import streamlit as st
2
- import torch
3
- from sentence_transformers import SentenceTransformer,util
4
- #from transformers import pipeline
5
- import pandas as pd
6
- import numpy as np
7
- import pickle
8
-
9
-
10
- # Load the pre-trained SentenceTransformer model
11
- #pipeline = pipeline(task="Sentence Similarity", model="all-MiniLM-L6-v2")
12
- model = SentenceTransformer('neuml/pubmedbert-base-embeddings')
13
- #sentence_embed = pd.read_csv('Reference_file.csv')
14
- with open("embeddings_1.pkl", "rb") as fIn:
15
- stored_data = pickle.load(fIn)
16
- stored_code = stored_data["SBS_code"]
17
- stored_sentences = stored_data["Description"]
18
- stored_embeddings = stored_data["embeddings"]
19
-
20
- import streamlit as st
21
-
22
- # Define the function for mapping code
23
- def mapping_code(user_input):
24
- emb1 = model.encode(user_input.lower())
25
- similarities = []
26
- for sentence in stored_embeddings:
27
- similarity = util.cos_sim(sentence, emb1)
28
- similarities.append(similarity)
29
-
30
- # Combine similarity scores with 'code' and 'description'
31
- result = list(zip(stored_data["SBS_code"],stored_data["Description"], similarities))
32
-
33
- # Sort results by similarity scores
34
- result.sort(key=lambda x: x[2], reverse=True)
35
-
36
- num_results = min(5, len(result))
37
-
38
- # Return top 5 entries with 'code', 'description', and 'similarity_score'
39
- top_5_results = []
40
- if num_results > 0:
41
- for i in range(num_results):
42
- code, description, similarity_score = result[i]
43
- top_5_results.append({"Code": code, "Description": description, "Similarity Score": similarity_score})
44
- else:
45
- top_5_results.append({"Code": "", "Description": "No similar sentences found", "Similarity Score": 0.0})
46
-
47
- return top_5_results
48
- # Streamlit frontend interface
49
- def main():
50
- st.title("CPT Description Mapping")
51
-
52
- # Input text box for user input
53
- user_input = st.text_input("Enter CPT description:")
54
-
55
- # Button to trigger mapping
56
- if st.button("Map"):
57
- if user_input:
58
- st.write("Please wait for a moment .... ")
59
-
60
- # Call backend function to get mapping results
61
- mapping_results = mapping_code(user_input)
62
-
63
- # Display top 5 similar sentences
64
- st.write("Top 5 similar sentences:")
65
- for i, result in enumerate(mapping_results, 1):
66
- st.write(f"{i}. Code: {result['Code']}, Description: {result['Description']}, Similarity Score: {float(result['Similarity Score']):.4f}")
67
-
68
-
69
- if __name__ == "__main__":
70
- main()