Update app.py
Browse files
app.py
CHANGED
@@ -13,13 +13,18 @@ sentence_embed = pd.read_csv('Reference_file_2 (1).csv')
|
|
13 |
|
14 |
#st.write(sentence_embed.head(5))
|
15 |
|
16 |
-
#
|
|
|
|
|
|
|
|
|
|
|
17 |
def mapping_code(user_input):
|
18 |
emb1 = model.encode(user_input, convert_to_tensor=True)
|
19 |
similarities = []
|
20 |
-
for
|
21 |
-
|
22 |
-
similarity =
|
23 |
similarities.append(similarity)
|
24 |
|
25 |
# Combine similarity scores with 'code' and 'description'
|
@@ -55,6 +60,5 @@ def main():
|
|
55 |
for i, result in enumerate(mapping_results, 1):
|
56 |
st.write(f"{i}. Code: {result['Code']}, Description: {result['Description']}, Similarity Score: {result['Similarity Score']:.4f}")
|
57 |
|
58 |
-
# Run the app
|
59 |
if __name__ == "__main__":
|
60 |
main()
|
|
|
13 |
|
14 |
#st.write(sentence_embed.head(5))
|
15 |
|
16 |
+
# Function to compute cosine similarity
|
17 |
+
def cosine_similarity(v1, v2):
|
18 |
+
"""Compute cosine similarity between two vectors."""
|
19 |
+
return np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))
|
20 |
+
|
21 |
+
# Backend function for mapping
|
22 |
def mapping_code(user_input):
|
23 |
emb1 = model.encode(user_input, convert_to_tensor=True)
|
24 |
similarities = []
|
25 |
+
for sentence_emb in sentence_embed['embeds']:
|
26 |
+
sentence_emb = np.array(sentence_emb)
|
27 |
+
similarity = cosine_similarity(sentence_emb, emb1)
|
28 |
similarities.append(similarity)
|
29 |
|
30 |
# Combine similarity scores with 'code' and 'description'
|
|
|
60 |
for i, result in enumerate(mapping_results, 1):
|
61 |
st.write(f"{i}. Code: {result['Code']}, Description: {result['Description']}, Similarity Score: {result['Similarity Score']:.4f}")
|
62 |
|
|
|
63 |
if __name__ == "__main__":
|
64 |
main()
|