ceejaytheanalyst commited on
Commit
290d982
·
verified ·
1 Parent(s): f4090fc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -5
app.py CHANGED
@@ -13,13 +13,18 @@ sentence_embed = pd.read_csv('Reference_file_2 (1).csv')
13
 
14
  #st.write(sentence_embed.head(5))
15
 
16
- # Define the backend function
 
 
 
 
 
17
  def mapping_code(user_input):
18
  emb1 = model.encode(user_input, convert_to_tensor=True)
19
  similarities = []
20
- for sentence in model.encode(sentence_embed['embeds'], convert_to_tensor=True):
21
- #util.cos_sim(sentence, emb1)
22
- similarity = util.paraphrase_mining(sentence, emb1,top_k=10)
23
  similarities.append(similarity)
24
 
25
  # Combine similarity scores with 'code' and 'description'
@@ -55,6 +60,5 @@ def main():
55
  for i, result in enumerate(mapping_results, 1):
56
  st.write(f"{i}. Code: {result['Code']}, Description: {result['Description']}, Similarity Score: {result['Similarity Score']:.4f}")
57
 
58
- # Run the app
59
  if __name__ == "__main__":
60
  main()
 
13
 
14
  #st.write(sentence_embed.head(5))
15
 
16
+ # Function to compute cosine similarity
17
+ def cosine_similarity(v1, v2):
18
+ """Compute cosine similarity between two vectors."""
19
+ return np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))
20
+
21
+ # Backend function for mapping
22
  def mapping_code(user_input):
23
  emb1 = model.encode(user_input, convert_to_tensor=True)
24
  similarities = []
25
+ for sentence_emb in sentence_embed['embeds']:
26
+ sentence_emb = np.array(sentence_emb)
27
+ similarity = cosine_similarity(sentence_emb, emb1)
28
  similarities.append(similarity)
29
 
30
  # Combine similarity scores with 'code' and 'description'
 
60
  for i, result in enumerate(mapping_results, 1):
61
  st.write(f"{i}. Code: {result['Code']}, Description: {result['Description']}, Similarity Score: {result['Similarity Score']:.4f}")
62
 
 
63
  if __name__ == "__main__":
64
  main()