Update app.py
Browse files
app.py
CHANGED
@@ -8,8 +8,13 @@ import numpy as np
|
|
8 |
|
9 |
# Load the pre-trained SentenceTransformer model
|
10 |
#pipeline = pipeline(task="Sentence Similarity", model="all-MiniLM-L6-v2")
|
11 |
-
model = SentenceTransformer('
|
12 |
-
sentence_embed = pd.read_csv('Reference_file.csv')
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
import streamlit as st
|
15 |
|
@@ -17,12 +22,12 @@ import streamlit as st
|
|
17 |
def mapping_code(user_input):
|
18 |
emb1 = model.encode(user_input.lower())
|
19 |
similarities = []
|
20 |
-
for sentence in
|
21 |
similarity = util.cos_sim(sentence, emb1)
|
22 |
similarities.append(similarity)
|
23 |
|
24 |
# Combine similarity scores with 'code' and 'description'
|
25 |
-
result = list(zip(
|
26 |
|
27 |
# Sort results by similarity scores
|
28 |
result.sort(key=lambda x: x[2], reverse=True)
|
|
|
8 |
|
9 |
# Load the pre-trained SentenceTransformer model
|
10 |
#pipeline = pipeline(task="Sentence Similarity", model="all-MiniLM-L6-v2")
|
11 |
+
model = SentenceTransformer('neuml/pubmedbert-base-embeddings')
|
12 |
+
#sentence_embed = pd.read_csv('Reference_file.csv')
|
13 |
+
with open("embeddings.pkl", "rb") as fIn:
|
14 |
+
stored_data = pickle.load(fIn)
|
15 |
+
stored_code = stored_data["SBS_code"]
|
16 |
+
stored_sentences = stored_data["sentences"]
|
17 |
+
stored_embeddings = stored_data["embeddings"]
|
18 |
|
19 |
import streamlit as st
|
20 |
|
|
|
22 |
def mapping_code(user_input):
|
23 |
emb1 = model.encode(user_input.lower())
|
24 |
similarities = []
|
25 |
+
for sentence in stored_embeddings:
|
26 |
similarity = util.cos_sim(sentence, emb1)
|
27 |
similarities.append(similarity)
|
28 |
|
29 |
# Combine similarity scores with 'code' and 'description'
|
30 |
+
result = list(zip(stored_data["SBS_code"],stored_data["sentences"], similarities))
|
31 |
|
32 |
# Sort results by similarity scores
|
33 |
result.sort(key=lambda x: x[2], reverse=True)
|