ceejaytheanalyst commited on
Commit
33d7cef
·
verified ·
1 Parent(s): 8f9cb84

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -4
app.py CHANGED
@@ -8,8 +8,13 @@ import numpy as np
8
 
9
  # Load the pre-trained SentenceTransformer model
10
  #pipeline = pipeline(task="Sentence Similarity", model="all-MiniLM-L6-v2")
11
- model = SentenceTransformer('all-MiniLM-L6-v2')
12
- sentence_embed = pd.read_csv('Reference_file.csv')
 
 
 
 
 
13
 
14
  import streamlit as st
15
 
@@ -17,12 +22,12 @@ import streamlit as st
17
  def mapping_code(user_input):
18
  emb1 = model.encode(user_input.lower())
19
  similarities = []
20
- for sentence in sentence_embed['embeds']:
21
  similarity = util.cos_sim(sentence, emb1)
22
  similarities.append(similarity)
23
 
24
  # Combine similarity scores with 'code' and 'description'
25
- result = list(zip(sentence_embed['SBS Code'], sentence_embed['Long Description'], similarities))
26
 
27
  # Sort results by similarity scores
28
  result.sort(key=lambda x: x[2], reverse=True)
 
8
 
9
  # Load the pre-trained SentenceTransformer model
10
  #pipeline = pipeline(task="Sentence Similarity", model="all-MiniLM-L6-v2")
11
+ model = SentenceTransformer('neuml/pubmedbert-base-embeddings')
12
+ #sentence_embed = pd.read_csv('Reference_file.csv')
13
+ with open("embeddings.pkl", "rb") as fIn:
14
+ stored_data = pickle.load(fIn)
15
+ stored_code = stored_data["SBS_code"]
16
+ stored_sentences = stored_data["sentences"]
17
+ stored_embeddings = stored_data["embeddings"]
18
 
19
  import streamlit as st
20
 
 
22
  def mapping_code(user_input):
23
  emb1 = model.encode(user_input.lower())
24
  similarities = []
25
+ for sentence in stored_embeddings:
26
  similarity = util.cos_sim(sentence, emb1)
27
  similarities.append(similarity)
28
 
29
  # Combine similarity scores with 'code' and 'description'
30
+ result = list(zip(stored_data["SBS_code"],stored_data["sentences"], similarities))
31
 
32
  # Sort results by similarity scores
33
  result.sort(key=lambda x: x[2], reverse=True)