Update app.py
Browse filesadded a threshold of 70%
app.py
CHANGED
@@ -24,24 +24,34 @@ def check_misspelled_words(user_input):
|
|
24 |
|
25 |
return misspelled
|
26 |
|
|
|
27 |
# Define the function for mapping code
|
28 |
def mapping_code(user_input):
|
29 |
-
if len(user_input.split())
|
30 |
-
raise ValueError("Input sentence should be
|
31 |
emb1 = model.encode(user_input.lower())
|
32 |
-
#similarities = util.pytorch_cos_sim(emb1, stored_embeddings)[0]
|
33 |
similarities = []
|
34 |
for sentence in stored_embeddings:
|
35 |
similarity = util.cos_sim(sentence, emb1)
|
36 |
similarities.append(similarity)
|
37 |
|
38 |
-
#
|
39 |
-
result = [(code,
|
|
|
40 |
# Sort results by similarity scores
|
41 |
result.sort(key=lambda x: x[2], reverse=True)
|
42 |
-
|
43 |
num_results = min(5, len(result))
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
return top_5_results
|
46 |
|
47 |
# Streamlit frontend interface
|
|
|
24 |
|
25 |
return misspelled
|
26 |
|
27 |
+
# Define the function for mapping code
|
28 |
# Define the function for mapping code
|
29 |
def mapping_code(user_input):
|
30 |
+
if len(user_input.split()) < 5: # Check if sentence has less than 5 words
|
31 |
+
raise ValueError("Input sentence should be at least 5 words long.")
|
32 |
emb1 = model.encode(user_input.lower())
|
|
|
33 |
similarities = []
|
34 |
for sentence in stored_embeddings:
|
35 |
similarity = util.cos_sim(sentence, emb1)
|
36 |
similarities.append(similarity)
|
37 |
|
38 |
+
# Filter results with similarity scores above 0.70
|
39 |
+
result = [(code, desc, sim) for (code, desc, sim) in zip(stored_data["SBS_code"], stored_data["Description"], similarities) if sim > 0.70]
|
40 |
+
|
41 |
# Sort results by similarity scores
|
42 |
result.sort(key=lambda x: x[2], reverse=True)
|
43 |
+
|
44 |
num_results = min(5, len(result))
|
45 |
+
|
46 |
+
# Return top 5 entries with 'code', 'description', and 'similarity_score'
|
47 |
+
top_5_results = []
|
48 |
+
if num_results > 0:
|
49 |
+
for i in range(num_results):
|
50 |
+
code, description, similarity_score = result[i]
|
51 |
+
top_5_results.append({"Code": code, "Description": description, "Similarity Score": similarity_score})
|
52 |
+
else:
|
53 |
+
top_5_results.append({"Code": "", "Description": "No match", "Similarity Score": 0.0})
|
54 |
+
|
55 |
return top_5_results
|
56 |
|
57 |
# Streamlit frontend interface
|