Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
from sentence_transformers import SentenceTransformer, util
|
4 |
-
#from spellchecker import SpellChecker
|
5 |
import pickle
|
6 |
import re
|
7 |
|
@@ -27,19 +26,7 @@ def validate_input(input_string):
|
|
27 |
else:
|
28 |
return False
|
29 |
|
30 |
-
|
31 |
-
def mapping_code(user_input, mode):
|
32 |
-
if mode == "CPT_to_SBS":
|
33 |
-
stored_embeddings_cpt = stored_embeddings
|
34 |
-
stored_data_cpt = stored_data_cpt
|
35 |
-
code_column = stored_data["CPT_CODE"]
|
36 |
-
description_column = stored_data["FULL_DESCRIPTION"]
|
37 |
-
elif mode == "SBS_to_CPT":
|
38 |
-
stored_embeddings = stored_embeddings
|
39 |
-
stored_data = stored_data_sbs
|
40 |
-
code_column = stored_data["SBS_code"]
|
41 |
-
description_column = stored_data["Description"]
|
42 |
-
|
43 |
emb1 = model.encode(user_input.lower())
|
44 |
similarities = []
|
45 |
for sentence in stored_embeddings:
|
@@ -47,7 +34,7 @@ def mapping_code(user_input, mode):
|
|
47 |
similarities.append(similarity)
|
48 |
|
49 |
# Filter results with similarity scores above 0.70
|
50 |
-
result = [(code, desc, sim) for (code, desc, sim) in zip(
|
51 |
|
52 |
# Sort results by similarity scores
|
53 |
result.sort(key=lambda x: x[2], reverse=True)
|
@@ -65,9 +52,39 @@ def mapping_code(user_input, mode):
|
|
65 |
|
66 |
return top_5_results
|
67 |
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
def main():
|
72 |
st.title("CPT-SBS Code Mapping")
|
73 |
|
@@ -104,4 +121,3 @@ def main():
|
|
104 |
|
105 |
if __name__ == "__main__":
|
106 |
main()
|
107 |
-
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
from sentence_transformers import SentenceTransformer, util
|
|
|
4 |
import pickle
|
5 |
import re
|
6 |
|
|
|
26 |
else:
|
27 |
return False
|
28 |
|
29 |
+
def cpt_code(user_input):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
emb1 = model.encode(user_input.lower())
|
31 |
similarities = []
|
32 |
for sentence in stored_embeddings:
|
|
|
34 |
similarities.append(similarity)
|
35 |
|
36 |
# Filter results with similarity scores above 0.70
|
37 |
+
result = [(code, desc, sim) for (code, desc, sim) in zip(stored_data["SBS_code"], stored_data["Description"], similarities)]
|
38 |
|
39 |
# Sort results by similarity scores
|
40 |
result.sort(key=lambda x: x[2], reverse=True)
|
|
|
52 |
|
53 |
return top_5_results
|
54 |
|
55 |
+
def sbs_code(user_input):
|
56 |
+
emb1 = model.encode(user_input.lower())
|
57 |
+
similarities = []
|
58 |
+
for sentence in stored_embeddings_cpt:
|
59 |
+
similarity = util.cos_sim(sentence, emb1)
|
60 |
+
similarities.append(similarity)
|
61 |
+
|
62 |
+
# Filter results with similarity scores above 0.70
|
63 |
+
result = [(code, desc, sim) for (code, desc, sim) in zip(stored_data_cpt["CPT_CODE"], stored_data_cpt["FULL_DESCRIPTION"], similarities)]
|
64 |
+
|
65 |
+
# Sort results by similarity scores
|
66 |
+
result.sort(key=lambda x: x[2], reverse=True)
|
67 |
+
|
68 |
+
num_results = min(5, len(result))
|
69 |
|
70 |
+
# Return top 5 entries with 'code', 'description', and 'similarity_score'
|
71 |
+
top_5_results = []
|
72 |
+
if num_results > 0:
|
73 |
+
for i in range(num_results):
|
74 |
+
code, description, similarity_score = result[i]
|
75 |
+
top_5_results.append({"Code": code, "Description": description, "Similarity Score": similarity_score})
|
76 |
+
else:
|
77 |
+
top_5_results.append({"Code": "", "Description": "No match", "Similarity Score": 0.0})
|
78 |
+
|
79 |
+
return top_5_results
|
80 |
+
|
81 |
+
def mapping_code(user_input, mode):
|
82 |
+
if mode == "CPT_to_SBS":
|
83 |
+
return cpt_code(user_input)
|
84 |
+
elif mode == "SBS_to_CPT":
|
85 |
+
return sbs_code(user_input)
|
86 |
+
|
87 |
+
# Streamlit frontend interface
|
88 |
def main():
|
89 |
st.title("CPT-SBS Code Mapping")
|
90 |
|
|
|
121 |
|
122 |
if __name__ == "__main__":
|
123 |
main()
|
|