import streamlit as st import torch from sentence_transformers import SentenceTransformer, util #from spellchecker import SpellChecker import pickle import re # Load the pre-trained SentenceTransformer model model = SentenceTransformer('neuml/pubmedbert-base-embeddings') # Load stored data with open("embeddings_1.pkl", "rb") as fIn: stored_data = pickle.load(fIn) stored_embeddings = stored_data["embeddings"] def validate_input(input_string): # Regular expression pattern to match letters and numbers, or letters only pattern = r'^[a-zA-Z0-9]+$|^[a-zA-Z]+$' # Check if input contains at least one non-numeric character if re.match(pattern, input_string): return True else: return False # Define the function for mapping code def mapping_code(user_input,user_slider_input_number): emb1 = model.encode(user_input.lower()) similarities = [] for sentence in stored_embeddings: similarity = util.cos_sim(sentence, emb1) similarities.append(similarity) # Filter results with similarity scores above 0.70 result = [(code, desc, sim) for (code, desc, sim) in zip(stored_data["SBS_code"], stored_data["Description"], similarities) if sim > user_slider_input_number] # Sort results by similarity scores result.sort(key=lambda x: x[2], reverse=True) num_results = min(5, len(result)) # Return top 5 entries with 'code', 'description', and 'similarity_score' top_5_results = [] if num_results > 0: for i in range(num_results): code, description, similarity_score = result[i] top_5_results.append({"Code": code, "Description": description, "Similarity Score": similarity_score}) else: top_5_results.append({"Code": "", "Description": "No match", "Similarity Score": 0.0}) return top_5_results # Streamlit frontend interface def main(): st.title("CPT Description Mapping") st.markdown("**⚠️ Please ensure the accuracy of your input spellings.**", unsafe_allow_html=True) st.markdown("**💡 Note:** Please note that the similarity scores provided are not indicative of accuracy . Top 5 code description provided should be verified with CPT description by User.", unsafe_allow_html=True) #user_slider_input_number = st.sidebar.slider('Select similarity threshold', 0.0, 1.0, 0.7, 0.01, key='slider1', help='Adjust the similarity threshold') # Input text box for user input user_input = st.text_input("Enter CPT description:", placeholder="Please enter a full description for better search results.") # Button to trigger mapping if st.button("Map"): if not user_input.strip(): # Check if input is empty or contains only whitespace st.error("Input box cannot be empty.") elif not validate_input(user_input): st.warning("Please input correct description containing only letters and numbers, or letters only.") else: st.write("Please wait for a moment .... ") # Call backend function to get mapping results try: mapping_results = mapping_code(user_input)#user_slider_input_number # Display top 5 similar sentences st.write("Top 5 similar sentences:") for i, result in enumerate(mapping_results, 1): st.write(f"{i}. Code: {result['Code']}, Description: {result['Description']}, Similarity Score: {float(result['Similarity Score']):.4f}") except ValueError as e: st.error(str(e)) if __name__ == "__main__": main()