import streamlit as st import torch from sentence_transformers import SentenceTransformer,util #from transformers import pipeline import pandas as pd import numpy as np # Load the pre-trained SentenceTransformer model #pipeline = pipeline(task="Sentence Similarity", model="all-MiniLM-L6-v2") model = SentenceTransformer('all-MiniLM-L6-v2') sentence_embed = pd.read_csv('Reference_file_2 (1).csv') #st.write(sentence_embed.head(5)) # Function to compute cosine similarity def cosine_similarity(v1, v2): """Compute cosine similarity between two vectors.""" return np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2)) # Backend function for mapping def mapping_code(user_input): emb1 = model.encode(user_input, convert_to_tensor=True).astype(float) similarities = [] for sentence_emb in sentence_embed['embeds']: sentence_emb = np.array(sentence_emb).astype(float) similarity = cosine_similarity(sentence_emb, emb1) similarities.append(similarity) # Combine similarity scores with 'code' and 'description' result = list(zip(sentence_embed['SBS Code'], sentence_embed['Long Description'], similarities)) # Sort results by similarity scores result.sort(key=lambda x: x[2], reverse=True) # Return top 5 entries with 'code', 'description', and 'similarity_score' top_5_results = [] for i in range(5): code, description, similarity_score = result[i] top_5_results.append({"Code": code, "Description": description, "Similarity Score": similarity_score}) return top_5_results # Streamlit frontend interface def main(): st.title("CPT Description Mapping") # Input text box for user input user_input = st.text_input("Enter CPT description:") # Button to trigger mapping if st.button("Map"): if user_input: st.write("Please wait for a moment .... ") # Call backend function to get mapping results mapping_results = mapping_code(user_input) # Display top 5 similar sentences st.write("Top 5 similar sentences:") for i, result in enumerate(mapping_results, 1): st.write(f"{i}. Code: {result['Code']}, Description: {result['Description']}, Similarity Score: {result['Similarity Score']:.4f}") if __name__ == "__main__": main()