import streamlit as st import torch from sentence_transformers import SentenceTransformer, util # Load the pre-trained SentenceTransformer model model = SentenceTransformer('all-MiniLM-L6-v2') # Define the backend function def mapping_code(user_input): emb1 = model.encode(user_input.lower()) similarities = [] for sentence_embed in sentences['embeds']: similarity = util.cos_sim(sentence_embed, emb1) similarities.append(similarity) # Combine similarity scores with 'code' and 'description' result = list(zip(sentences['SBS Code'], sentences['Long Description'], similarities)) # Sort results by similarity scores result.sort(key=lambda x: x[2], reverse=True) # Return top 5 entries with 'code', 'description', and 'similarity_score' top_5_results = [] for i in range(5): code, description, similarity_score = result[i] top_5_results.append({"Code": code, "Description": description, "Similarity Score": similarity_score}) return top_5_results # Streamlit frontend interface def main(): st.title("CPT Description Mapping") # Input text box for user input user_input = st.text_input("Enter CPT description:") # Button to trigger mapping if st.button("Map"): if user_input: st.write("Please wait for a moment .... ") # Call backend function to get mapping results mapping_results = mapping_code(user_input) # Display top 5 similar sentences st.write("Top 5 similar sentences:") for i, result in enumerate(mapping_results, 1): st.write(f"{i}. Code: {result['Code']}, Description: {result['Description']}, Similarity Score: {result['Similarity Score']:.4f}") # Run the app if __name__ == "__main__": main()