import streamlit as st import torch from sentence_transformers import SentenceTransformer,util #from transformers import pipeline import pandas as pd import numpy as np import pickle # Load the pre-trained SentenceTransformer model #pipeline = pipeline(task="Sentence Similarity", model="all-MiniLM-L6-v2") model = SentenceTransformer('neuml/pubmedbert-base-embeddings') #sentence_embed = pd.read_csv('Reference_file.csv') with open("embeddings_1.pkl", "rb") as fIn: stored_data = pickle.load(fIn) stored_code = stored_data["SBS_code"] stored_sentences = stored_data["sentences"] stored_embeddings = stored_data["embeddings"] import streamlit as st # Define the function for mapping code def mapping_code(user_input): emb1 = model.encode(user_input.lower()) similarities = [] for sentence in stored_embeddings: similarity = util.cos_sim(sentence, emb1) similarities.append(similarity) # Combine similarity scores with 'code' and 'description' result = list(zip(stored_data["SBS_code"],stored_data["sentences"], similarities)) # Sort results by similarity scores result.sort(key=lambda x: x[2], reverse=True) num_results = min(5, len(result)) # Return top 5 entries with 'code', 'description', and 'similarity_score' top_5_results = [] if num_results > 0: for i in range(num_results): code, description, similarity_score = result[i] top_5_results.append({"Code": code, "Description": description, "Similarity Score": similarity_score}) else: top_5_results.append({"Code": "", "Description": "No similar sentences found", "Similarity Score": 0.0}) return top_5_results # Streamlit frontend interface def main(): st.title("CPT Description Mapping") # Input text box for user input user_input = st.text_input("Enter CPT description:") # Button to trigger mapping if st.button("Map"): if user_input: st.write("Please wait for a moment .... ") # Call backend function to get mapping results mapping_results = mapping_code(user_input) # Display top 5 similar sentences st.write("Top 5 similar sentences:") for i, result in enumerate(mapping_results, 1): st.write(f"{i}. Code: {result['Code']}, Description: {result['Description']}, Similarity Score: {float(result['Similarity Score']):.4f}") if __name__ == "__main__": main()