Spaces:
Runtime error
Runtime error
File size: 3,898 Bytes
f1cf8a0 2d815a4 f1cf8a0 9f9f985 2d815a4 9f9f985 f1cf8a0 2d815a4 f1cf8a0 a38b919 f1cf8a0 2d815a4 f1cf8a0 2d815a4 a08e60c 9f9f985 2d815a4 a08e60c 2d815a4 a08e60c f1cf8a0 2d815a4 f1cf8a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import os
import openai
from transformers import pipeline, Conversation
import gradio as gr
import json
from dotenv import load_dotenv
# Load environment variables from the .env file de forma local
load_dotenv()
import base64
with open("Iso_Logotipo_Ceibal.png", "rb") as image_file:
encoded_image = base64.b64encode(image_file.read()).decode()
openai.api_key = os.environ['OPENAI_API_KEY']
def clear_chat(message, chat_history):
return "", []
def add_new_message(message, questions_guide, chat_history):
new_chat = []
new_chat.append({"role": "system", "content": '{}'.format(questions_guide)})
for turn in chat_history:
user, bot = turn
new_chat.append({"role": "user", "content": user})
new_chat.append({"role": "assistant","content":bot})
new_chat.append({"role": "user","content":message})
return new_chat
def respond(message, questions_guide, chat_history):
prompt = add_new_message(message, questions_guide, chat_history)
# stream = client.generate_stream(prompt,
# max_new_tokens=1024,
# stop_sequences=["\nUser:", "<|endoftext|>"],
# temperature=temperature)
# #stop_sequences to not generate the user answer
# acc_text = ""
response = openai.ChatCompletion.create(
model="gpt-4-0125-preview",
messages= prompt,
temperature=0.5,
max_tokens=1000,
stream=True,
)#.choices[0].message.content
#chat_history.append((message, response))
token_counter = 0
partial_words = ""
counter=0
for chunk in response:
chunk_message = chunk['choices'][0]['delta']
if(len(chat_history))<1:
# print("entr贸 aca谩")
partial_words += chunk_message.content
chat_history.append([message,chunk_message.content])
else:
# print("antes", chat_history)
if(len(chunk_message)!=0):
if(len(chunk_message)==2):
partial_words += chunk_message.content
chat_history.append([message,chunk_message.content])
else:
partial_words += chunk_message.content
chat_history[-1] =([message,partial_words])
yield "",chat_history
with gr.Blocks() as demo:
gr.Markdown("""
<center>
<img src='data:image/jpg;base64,{}' width=200px>
<h3>
En este espacio generar preguntas sobre el texto de referencia.
</h3>
</center>
""".format(encoded_image))
with gr.Row():
questions_guide = gr.Textbox(label="Indicar aqu铆 la gu铆a para generar las preguntas:", value="En base al texto o novela que recibas como entrada, deber谩s generar preguntas orientadas para estudiantes escolares entre 8 y 12 a帽os. La idea es que las preguntas sirvan para evaluar la comprensi贸n lectora de los estudiantes. Debes generar 10 preguntas m煤ltiple opci贸n, en orden creciente de dificultad, donde cada una de ellas tiene tres opciones y la opci贸n correcta debe estar indicada con una X al comienzo.")
with gr.Row():
msg = gr.Textbox(label="Pegar aqu铆 el texto de referencia:")
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(height=250) #just to fit the notebook
with gr.Column(scale=1):
btn = gr.Button("Enviar")
clear = gr.ClearButton(components=[msg, chatbot], value="Borrar chat")
btn.click(respond, inputs=[msg, questions_guide, chatbot], outputs=[msg, chatbot])
msg.submit(respond, inputs=[msg, questions_guide, chatbot], outputs=[msg, chatbot]) #Press enter to submit
clear.click(clear_chat,inputs=[msg, chatbot], outputs=[msg, chatbot])
demo.queue()
demo.launch() |