File size: 26,355 Bytes
b1f3eeb
 
 
 
 
 
 
 
 
6d2a41d
b1f3eeb
 
6d2a41d
05d618f
b1f3eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d2a41d
 
 
b1f3eeb
 
 
 
05d618f
 
 
 
 
 
 
 
 
89634f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1f3eeb
 
89634f3
 
 
 
 
 
b1f3eeb
89634f3
b1f3eeb
 
89634f3
b1f3eeb
 
 
 
 
 
 
 
 
6d2a41d
 
 
05d618f
 
6d2a41d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1f3eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89634f3
 
 
 
6d2a41d
89634f3
 
 
 
 
 
6d2a41d
 
89634f3
b1f3eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89634f3
b1f3eeb
 
 
 
 
89634f3
b1f3eeb
 
 
 
 
 
 
 
 
 
 
89634f3
b1f3eeb
 
 
 
89634f3
b1f3eeb
 
 
 
 
 
 
 
89634f3
b1f3eeb
 
 
 
 
 
 
89634f3
b1f3eeb
 
 
 
89634f3
b1f3eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d2a41d
 
 
b1f3eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89634f3
b1f3eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89634f3
b1f3eeb
 
 
 
05d618f
 
 
b1f3eeb
 
 
6d2a41d
b1f3eeb
89634f3
b1f3eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89634f3
b1f3eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89634f3
 
 
 
b1f3eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89634f3
b1f3eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d2a41d
b1f3eeb
 
 
 
6d2a41d
 
89634f3
 
 
 
6d2a41d
 
89634f3
 
 
 
 
 
6d2a41d
 
 
 
b1f3eeb
 
 
 
 
 
6d2a41d
b1f3eeb
 
 
 
6d2a41d
 
 
 
89634f3
6d2a41d
 
 
 
 
 
 
 
 
 
 
 
b1f3eeb
6d2a41d
 
 
 
 
 
 
 
 
89634f3
b1f3eeb
 
6d2a41d
 
 
 
 
 
b1f3eeb
 
89634f3
b1f3eeb
6d2a41d
b1f3eeb
 
6d2a41d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1f3eeb
6d2a41d
 
 
 
b1f3eeb
 
6d2a41d
 
 
b1f3eeb
 
 
 
89634f3
6d2a41d
 
b1f3eeb
6d2a41d
b1f3eeb
6d2a41d
 
b1f3eeb
6d2a41d
 
b1f3eeb
 
 
 
 
 
 
 
 
6d2a41d
 
b1f3eeb
89634f3
 
 
 
 
 
 
b1f3eeb
 
16903e7
b1f3eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05d618f
 
 
 
b1f3eeb
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
import argparse
from collections import defaultdict
import datetime
import json
import os
import random
import time
import uuid
import websocket
from websocket import WebSocketConnectionClosedException
import gradio as gr
import requests
import logging
import re

from fastchat.conversation import SeparatorStyle
from fastchat.constants import (
    LOGDIR,
    WORKER_API_TIMEOUT,
    ErrorCode,
    MODERATION_MSG,
    CONVERSATION_LIMIT_MSG,
    SERVER_ERROR_MSG,
    INACTIVE_MSG,
    INPUT_CHAR_LEN_LIMIT,
    CONVERSATION_TURN_LIMIT,
    SESSION_EXPIRATION_TIME,
)
from fastchat.model.model_adapter import get_conversation_template
from fastchat.model.model_registry import model_info
from fastchat.serve.api_provider import (
    anthropic_api_stream_iter,
    openai_api_stream_iter,
    palm_api_stream_iter,
    init_palm_chat,
)
from fastchat.utils import (
    build_logger,
    violates_moderation,
    get_window_url_params_js,
    parse_gradio_auth_creds,
)


logger = build_logger("gradio_web_server", "gradio_web_server.log")

no_change_dropdown = gr.Dropdown.update()
no_change_slider = gr.Slider.update()
no_change_textbox = gr.Textbox.update()
no_change_btn = gr.Button.update()
enable_btn = gr.Button.update(interactive=True)
disable_btn = gr.Button.update(interactive=False)


def get_internet_ip():
    r = requests.get("http://txt.go.sohu.com/ip/soip")
    ip = re.findall(r'\d+.\d+.\d+.\d+', r.text)
    if ip is not None and len(ip) > 0:
        return ip[0]
    return None


enable_moderation = True if os.environ.get('enable_moderation', default='False')=="True" else False
concurrency_count = int(os.environ.get('concurrency_count', default='10'))
model_list_mode = os.environ.get('model_list_mode', default='reload')

midware_url = os.environ.get('midware_url', default='')
preset_token = os.environ.get('preset_token', default='')
worker_addr = os.environ.get('worker_addr', default='')

allow_running = int(os.environ.get('allow_running', default='1'))
ft_list_job_url = os.environ.get('ft_list_job_url', default='')
ft_submit_job_url = os.environ.get('ft_submit_job_url', default='')
ft_remove_job_url = os.environ.get('ft_remove_job_url', default='')
ft_console_log_url = os.environ.get('ft_console_log_url', default='')

dataset_sample = {
    "english": {
        "train": ["abcdef"],
        "valid": ["zxcvbn"]
    },
}


dataset_to_midware_name = {
    "english": "english",
    "cat": "cat",
    "dog": "dog",
    "bird": "bird"
}

hps_keys = ["epochs", "train_batch_size", "eval_batch_size", "gradient_accumulation_steps", "learning_rate", "weight_decay", "model_max_length"]


headers = {"User-Agent": "FastChat Client", "PRIVATE-TOKEN": preset_token}

learn_more_md = """
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/LICENSE) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
"""

ip_expiration_dict = defaultdict(lambda: 0)


def is_legal_char(c):
    if c.isalnum():
        return True
    if '\u4e00' <= c <= '\u9fff':
        return True
    if c in "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏.":
        return True
    if c in '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~':
        return True
    return False


def str_filter(s):
    for _ in range(2):
        if len(s) > 0 and (not is_legal_char(s[-1])):
            s = s[:-1]
    return s


def str_not_int(s):
    try:
        int(s)
        return False
    except ValueError:
        return True
    

def str_not_float(s):
    try:
        float(s)
        return False
    except ValueError:
        return True


class State:
    def __init__(self, model_name):
        self.conv = get_conversation_template(model_name)
        self.conv_id = uuid.uuid4().hex
        self.skip_next = False
        self.model_name = model_name

        if model_name == "palm-2":
            # According to release note, "chat-bison@001" is PaLM 2 for chat.
            # https://cloud.google.com/vertex-ai/docs/release-notes#May_10_2023
            self.palm_chat = init_palm_chat("chat-bison@001")

    def to_gradio_chatbot(self):
        return self.conv.to_gradio_chatbot()

    def dict(self):
        base = self.conv.dict()
        base.update(
            {
                "conv_id": self.conv_id,
                "model_name": self.model_name,
            }
        )
        return base


def get_conv_log_filename():
    t = datetime.datetime.now()
    name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
    return name


def get_model_list(midware_url):
    setted_model_order = {
        "vicuna-7b-v1.5-16k": 10,
        "vicuna-13b-v1.5": 90,
    }
    try:
        ret = requests.get(midware_url, headers={"PRIVATE-TOKEN": preset_token}, timeout=5)
        if "code" in ret.json() and "invalid" in ret.json()["code"]:
            gr.Warning("Invalid preset token.")
            models = ["CANNOT GET MODEL"]
        else:
            models = ret.json()["data"]
    except requests.exceptions.RequestException:
        models = ["CANNOT GET MODEL"]
    models = sorted(models, key=lambda x: setted_model_order.get(x, 100))
    logger.info(f"Models: {models}")
    return models


def load_demo_single(models, url_params):
    selected_model = models[0] if len(models) > 0 else ""
    if "model" in url_params:
        model = url_params["model"]
        if model in models:
            selected_model = model

    dropdown_update = gr.Dropdown.update(
        choices=models, value=selected_model, visible=True
    )

    state = None
    return (
        state,
        dropdown_update,
        gr.Chatbot.update(visible=True),
        gr.Textbox.update(visible=True),
        gr.Button.update(visible=True),
        gr.Row.update(visible=True),
        gr.Accordion.update(visible=True),
    )


def load_demo(url_params, request: gr.Request):
    global models

    ip = request.client.host
    logger.info(f"load_demo. ip: {ip}. params: {url_params}")
    ip_expiration_dict[ip] = time.time() + SESSION_EXPIRATION_TIME

    if model_list_mode == "reload":
        models = get_model_list(midware_url)

    return load_demo_single(models, url_params)

def regenerate(state, request: gr.Request):
    logger.info(f"regenerate. ip: {request.client.host}")
    state.conv.update_last_message(None)
    return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 2


def clear_history(request: gr.Request):
    logger.info(f"clear_history. ip: {request.client.host}")
    state = None
    return (state, [], "") + (disable_btn,) * 2


def add_text(state, model_selector, text, request: gr.Request):
    ip = request.client.host
    logger.info(f"add_text. ip: {ip}. len: {len(text)}")

    if state is None:
        state = State(model_selector)

    if len(text) <= 0:
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), "") + (no_change_btn,) * 2

    if ip_expiration_dict[ip] < time.time():
        logger.info(f"inactive. ip: {request.client.host}. text: {text}")
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), INACTIVE_MSG) + (no_change_btn,) * 2

    if enable_moderation:
        flagged = violates_moderation(text)
        if flagged:
            logger.info(f"violate moderation. ip: {request.client.host}. text: {text}")
            state.skip_next = True
            return (state, state.to_gradio_chatbot(), MODERATION_MSG) + (
                no_change_btn,
            ) * 2

    conv = state.conv
    if (len(conv.messages) - conv.offset) // 2 >= CONVERSATION_TURN_LIMIT:
        logger.info(f"conversation turn limit. ip: {request.client.host}. text: {text}")
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), CONVERSATION_LIMIT_MSG) + (
            no_change_btn,
        ) * 2

    text = text[:INPUT_CHAR_LEN_LIMIT]  # Hard cut-off
    conv.append_message(conv.roles[0], text)
    conv.append_message(conv.roles[1], None)
    return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 2


def post_process_code(code):
    sep = "\n```"
    if sep in code:
        blocks = code.split(sep)
        if len(blocks) % 2 == 1:
            for i in range(1, len(blocks), 2):
                blocks[i] = blocks[i].replace("\\_", "_")
        code = sep.join(blocks)
    return code


def model_worker_stream_iter(
    conv,
    model_name,
    worker_addr,
    prompt,
    temperature,
    repetition_penalty,
    top_p,
    max_new_tokens,
):
    # Make requests
    gen_params = {
        "model_name": model_name,
        "question": prompt,
        "temperature": 1e-6,
        "repetition_penalty": repetition_penalty,
        "top_p": top_p,
        "max_new_tokens": max_new_tokens,
        "stop": conv.stop_str,
        "stop_token_ids": conv.stop_token_ids,
        "echo": False,
    }
    logger.info(f"==== request ====\n{gen_params}")

    # Stream output
    response = requests.post(
        worker_addr,
        headers=headers,
        json=gen_params,
        stream=True,
        timeout=WORKER_API_TIMEOUT,
    )
    for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
        if chunk:
            data = json.loads(chunk.decode())
            yield data


def bot_response(state, temperature, top_p, max_new_tokens, request: gr.Request):
    logger.info(f"bot_response. ip: {request.client.host}")
    start_tstamp = time.time()
    temperature = float(temperature)
    top_p = float(top_p)
    max_new_tokens = int(max_new_tokens)

    if state.skip_next:
        # This generate call is skipped due to invalid inputs
        state.skip_next = False
        yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 2
        return

    conv, model_name = state.conv, state.model_name
    if model_name == "gpt-3.5-turbo" or model_name == "gpt-4":
        prompt = conv.to_openai_api_messages()
        stream_iter = openai_api_stream_iter(
            model_name, prompt, temperature, top_p, max_new_tokens
        )
    elif model_name == "claude-2" or model_name == "claude-instant-1":
        prompt = conv.get_prompt()
        stream_iter = anthropic_api_stream_iter(
            model_name, prompt, temperature, top_p, max_new_tokens
        )
    elif model_name == "palm-2":
        stream_iter = palm_api_stream_iter(
            state.palm_chat, conv.messages[-2][1], temperature, top_p, max_new_tokens
        )
    else:
        # Get worker address
        logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")
        # No available worker
        if worker_addr == "":
            conv.update_last_message(SERVER_ERROR_MSG)
            yield (
                state,
                state.to_gradio_chatbot(),
                enable_btn,
                enable_btn,
            )
            return

        # Construct prompt.
        # We need to call it here, so it will not be affected by "▌".
        prompt = conv.get_prompt()

        # Set repetition_penalty
        if "t5" in model_name:
            repetition_penalty = 1.2
        else:
            repetition_penalty = 1.0

        stream_iter = model_worker_stream_iter(
            conv,
            model_name,
            worker_addr,
            prompt,
            temperature,
            repetition_penalty,
            top_p,
            max_new_tokens,
        )

    conv.update_last_message("▌")
    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 2

    try:
        for data in stream_iter:
            if data["error_code"] == 0:
                finish_reason = data.get("finish_reason", None)
                if finish_reason is not None and finish_reason == "length":
                    gr.Warning("Answer interrupted because the setting of [Max output tokens], try set a larger value.")
                output = data["text"].strip()
                if "vicuna" in model_name:
                    output = post_process_code(output)
                output = str_filter(output)
                conv.update_last_message(output + "▌")
                yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 2
            else:
                output = data["text"] + f"\n\n(error_code: {data['error_code']})"
                conv.update_last_message(output)
                yield (state, state.to_gradio_chatbot()) + (
                    enable_btn,
                    enable_btn,
                )
                return
            time.sleep(0.015)
    except requests.exceptions.RequestException as e:
        conv.update_last_message(
            f"{SERVER_ERROR_MSG}\n\n"
            f"(error_code: {ErrorCode.GRADIO_REQUEST_ERROR}, {e})"
        )
        yield (state, state.to_gradio_chatbot()) + (
            enable_btn,
            enable_btn,
        )
        return
    except Exception as e:
        conv.update_last_message(
            f"{SERVER_ERROR_MSG}\n\n"
            f"(error_code: {ErrorCode.GRADIO_STREAM_UNKNOWN_ERROR}, {e})"
        )
        yield (state, state.to_gradio_chatbot()) + (
            enable_btn,
            enable_btn,
        )
        return

    # Delete "▌"
    conv.update_last_message(conv.messages[-1][-1][:-1])
    yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 2

    finish_tstamp = time.time()
    logger.info(f"{output}")

    with open(get_conv_log_filename(), "a") as fout:
        data = {
            "tstamp": round(finish_tstamp, 4),
            "type": "chat",
            "model": model_name,
            "gen_params": {
                "temperature": temperature,
                "top_p": top_p,
                "max_new_tokens": max_new_tokens,
            },
            "start": round(start_tstamp, 4),
            "finish": round(finish_tstamp, 4),
            "state": state.dict(),
            "ip": request.client.host,
        }
        fout.write(json.dumps(data) + "\n")


block_css = """
#dialog_notice_markdown {
    font-size: 104%
}
#dialog_notice_markdown th {
    display: none;
}
#dialog_notice_markdown td {
    padding-top: 6px;
    padding-bottom: 6px;
}
#leaderboard_markdown {
    font-size: 104%
}
#leaderboard_markdown td {
    padding-top: 6px;
    padding-bottom: 6px;
}
#leaderboard_dataframe td {
    line-height: 0.1em;
}
"""


def get_model_description_md(models):
    model_description_md = """
| | | |
| ---- | ---- | ---- |
"""
    ct = 0
    visited = set()
    for i, name in enumerate(models):
        if name in model_info:
            minfo = model_info[name]
            if minfo.simple_name in visited:
                continue
            visited.add(minfo.simple_name)
            one_model_md = f"[{minfo.simple_name}]({minfo.link}): {minfo.description}"
        else:
            visited.add(name)
            one_model_md = (
                f"[{name}](): Add the description at fastchat/model/model_registry.py"
            )

        if ct % 3 == 0:
            model_description_md += "|"
        model_description_md += f" {one_model_md} |"
        if ct % 3 == 2:
            model_description_md += "\n"
        ct += 1
    return model_description_md


def build_single_model_ui(models, add_promotion_links=False):
    with gr.Column():
        with gr.Tab("🧠 模型对话 Dialog"):
            state = gr.State()
            with gr.Row(elem_id="model_selector_row"):
                model_selector = gr.Dropdown(
                    choices=models,
                    value=models[0] if len(models) > 0 else "",
                    interactive=True,
                    show_label=False,
                    container=False,
                )

            chatbot = gr.Chatbot(
                elem_id="chatbot",
                label="Scroll down and start chatting",
                visible=False,
                height=550,
            )
            with gr.Row():
                with gr.Column(scale=20):
                    textbox = gr.Textbox(
                        show_label=False,
                        placeholder="Enter text and press ENTER",
                        visible=False,
                        container=False,
                    )
                with gr.Column(scale=1, min_width=50):
                    send_btn = gr.Button(value="Send", visible=False)

            with gr.Row(visible=False) as button_row:
                regenerate_btn = gr.Button(value="🔄  Regenerate", interactive=False)
                clear_btn = gr.Button(value="🗑️  Clear history", interactive=False)
            gr.Examples(
                examples=["如何变得富有?", "你能用Python写一段快速排序吗?", "How to be rich?", "Can you write a quicksort code in Python?"],
                inputs=textbox,
            )
            with gr.Accordion("Parameters", open=False, visible=False) as parameter_row:
                temperature = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.7,
                    step=0.1,
                    interactive=True,
                    label="Temperature",
                )
                top_p = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=1.0,
                    step=0.1,
                    interactive=True,
                    label="Top P",
                )
                max_output_tokens = gr.Slider(
                    minimum=16,
                    maximum=1024,
                    value=512,
                    step=64,
                    interactive=True,
                    label="Max output tokens",
                )

            gr.Markdown(learn_more_md)

            # Register listeners
            btn_list = [regenerate_btn, clear_btn]
            regenerate_btn.click(regenerate, state, [state, chatbot, textbox] + btn_list).then(
                bot_response,
                [state, temperature, top_p, max_output_tokens],
                [state, chatbot] + btn_list,
            )
            clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)

            model_selector.change(clear_history, None, [state, chatbot, textbox] + btn_list)

            textbox.submit(
                add_text, [state, model_selector, textbox], [state, chatbot, textbox] + btn_list
            ).then(
                bot_response,
                [state, temperature, top_p, max_output_tokens],
                [state, chatbot] + btn_list,
            )
            send_btn.click(
                add_text, [state, model_selector, textbox], [state, chatbot, textbox] + btn_list
            ).then(
                bot_response,
                [state, temperature, top_p, max_output_tokens],
                [state, chatbot] + btn_list,
            )
    return state, model_selector, chatbot, textbox, send_btn, button_row, parameter_row


def ft_get_job_data():
    running = 0
    res_lst = []
    try:
        r = requests.get(ft_list_job_url, headers={"PRIVATE-TOKEN": preset_token}, timeout=8)
        if "code" in r.json() and "invalid" in r.json()["code"]:
            gr.Warning("Invalid preset token.")
            return res_lst, running
        for d in r.json():
            if isinstance(d['status'], str) and d['status'].lower() == "running":
                running += 1
            hps = dict()
            for key in hps_keys:
                if key in d['parameter']:
                    hps[key] = d['parameter'][key]
            res_lst.append([d['jobName'], d['username'], d['created_at'], d['model'], d['dataset'], d['status'], json.dumps(hps)])
        res_lst = sorted(res_lst,key=(lambda x:x[2]), reverse=True)
        res_lst = sorted(res_lst,key=(lambda x:x[5]), reverse=True)
    except requests.exceptions.RequestException:
        logger.info(f"Get job list fail")
    return res_lst, running


def ft_refresh_click():
    return ft_get_job_data()


def ft_cease_click(ft_console):
    output = ft_console + "\n" + "** Streaming output ceased by user **"
    return output


def console_generator(addr, sleep_time):
    total_str = ""
    ws = websocket.WebSocket()
    ws.connect(addr, header={"PRIVATE-TOKEN": preset_token})
    while True:
        try:
            new_str = ws.recv()
            total_str = total_str + new_str
            time.sleep(sleep_time)
            yield total_str
        except WebSocketConnectionClosedException:
            ws.close()
            break
    ws.close()


def ft_submit_click(ft_latest_running_cnt, ft_user_name, ft_model, ft_dataset_name, ft_token, ft_epochs, ft_train_batch_size, ft_eval_batch_size, ft_gradient_accumulation_steps, ft_learning_rate, ft_weight_decay, ft_model_max_length):
    if ft_user_name == "":
        gr.Warning(f"Submit fail, empty username.")
        res_lst, running = ft_get_job_data()
        return res_lst, running, no_change_textbox
    if str_not_int(ft_train_batch_size) or str_not_int(ft_eval_batch_size) or str_not_int(ft_gradient_accumulation_steps) or str_not_float(ft_learning_rate) or str_not_float(ft_weight_decay) or str_not_int(ft_model_max_length):
        gr.Warning(f"Submit fail, check the types. [learning rate] and [weight decay] should be float, others HPs should be int.")
        res_lst, running = ft_get_job_data()
        return res_lst, running, no_change_textbox
    if ft_latest_running_cnt < int(allow_running):
        midware_header = {"FINETUNE-SECRET": ft_token, "PRIVATE-TOKEN": preset_token}
        hps_json = {
            "epochs": str(ft_epochs),
            "train_batch_size": str(ft_train_batch_size),
            "eval_batch_size": str(ft_eval_batch_size),
            "gradient_accumulation_steps": str(ft_gradient_accumulation_steps),
            "learning_rate": str(ft_learning_rate),
            "weight_decay": str(ft_weight_decay),
            "model_max_length": str(ft_model_max_length)
        }
        json_data = {
            "dataset": dataset_to_midware_name[ft_dataset_name],
            "model": ft_model,
            "parameter": hps_json,
            "username": ft_user_name
        }
        try:
            r = requests.post(ft_submit_job_url, json=json_data, headers=midware_header, timeout=120)
            job_name = r.json()["jobName"]
            gr.Info(f"Job {job_name} submit success.")
            res_lst, running = ft_get_job_data()
            total_str = ""
            for s in console_generator(ft_console_log_url + job_name, 1):
                total_str = s
                yield res_lst, running, s
            res_lst, running = ft_get_job_data()
            yield res_lst, running, total_str
        except requests.exceptions.RequestException:
            gr.Warning(f"Connection Failure.")
            res_lst, running = ft_get_job_data()
            return res_lst, running, ""
    else:
        gr.Warning(f"Only allow {str(allow_running)} job(s) running simultaneously, please wait.")
        res_lst, running = ft_get_job_data()
        return res_lst, running, no_change_textbox


def ft_show_click(ft_selected_row_data):
    for s in console_generator(ft_console_log_url + ft_selected_row_data[0], 0.2):
        yield s


def ft_remove_click(ft_selected_row_data, ft_token):
    status = ft_selected_row_data[5]
    if isinstance(status, str) and status.lower() == "running":
        r = requests.delete(ft_remove_job_url + ft_selected_row_data[0], headers={'FINETUNE-SECRET': ft_token, "PRIVATE-TOKEN": preset_token})
        if r.status_code == 200:
            gr.Info("Remove success.")
        else:
            gr.Warning(f"Remove fail. {r.status_code} {r.reason}.")
    else:
        gr.Warning("Remove fail. Can only remove a running job.")
    return ft_get_job_data()


def ft_jobs_info_select(ft_jobs_info, evt: gr.SelectData):
    selected_row = ft_jobs_info[evt.index[0]]
    if evt.index[1] in (3, 4, 6):
        try:
            Hps = json.loads(selected_row[6])
        except json.decoder.JSONDecodeError:
            Hps = dict()
        return [selected_row, selected_row[3], selected_row[4], Hps.get('epochs', ''), Hps.get('train_batch_size', ''), Hps.get('eval_batch_size', ''), 
                Hps.get('gradient_accumulation_steps', ''), Hps.get('learning_rate', ''), Hps.get('weight_decay', ''), Hps.get('model_max_length', '')]
    else:
        return [selected_row, no_change_dropdown, no_change_dropdown, no_change_slider, no_change_textbox, no_change_textbox, no_change_textbox, no_change_textbox, no_change_textbox, no_change_textbox]


def ft_dataset_preview_click(ft_dataset_name):
    value = dataset_sample.get(ft_dataset_name, {})
    return gr.JSON.update(value=value, visible=True)

def ft_hide_dataset_click():
    return gr.JSON.update(visible=False)

def build_demo(models):
    with gr.Blocks(
        title="Vicuna Test",
        theme=gr.themes.Base(),
        css = block_css
    ) as demo:
        url_params = gr.JSON(visible=False)
        (
            state,
            model_selector,
            chatbot,
            textbox,
            send_btn,
            button_row,
            parameter_row,
        ) = build_single_model_ui(models)

        if model_list_mode not in ["once", "reload"]:
            raise ValueError(f"Unknown model list mode: {model_list_mode}")
        demo.load(
            load_demo,
            [url_params],
            [
                state,
                model_selector,
                chatbot,
                textbox,
                send_btn,
                button_row,
                parameter_row,
            ],
            _js=get_window_url_params_js,
        )

    return demo

try:
    print("Internet IP:", get_internet_ip())
except Exception as e:
    print(f"Get Internet IP error: {e}")
models = get_model_list(midware_url)

# Launch the demo
demo = build_demo(models)
demo.queue(
    concurrency_count=concurrency_count, status_update_rate=10, api_open=False
).launch(
    max_threads=200,
)