Pathfinder / scrape_onet.py
celise88's picture
add job posting scrape capability to find my match page
24de2aa
raw
history blame
2.98 kB
import requests
from bs4 import BeautifulSoup
from cleantext import clean
import pandas as pd
import numpy as np
onet = pd.read_csv('static/ONET_JobTitles.csv')
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'}
def remove_new_line(value):
return ''.join(value.splitlines())
def get_onet_code(jobtitle):
onetCode = onet.loc[onet['JobTitle'] == jobtitle, 'onetCode']
onetCode = onetCode.reindex().tolist()[0]
return onetCode
def get_onet_description(onetCode):
url = "https://www.onetonline.org/link/summary/" + onetCode
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
jobdescription = soup.p.get_text()
return jobdescription
def get_onet_tasks(onetCode):
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'}
url = "https://www.onetonline.org/link/result/" + onetCode + "?c=tk&n_tk=0&s_tk=IM&c_tk=0"
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "")
tasks = clean(tasks)
tasks = tasks.split('show all show top 10')[1]
tasks = tasks.split('occupations related to multiple tasks')[0]
tasks = remove_new_line(tasks).replace("related occupations", " ").replace("core", " - ").replace(" )importance category task", "").replace(" find ", "")
tasks = tasks.split(". ")
tasks = [''.join(map(lambda c: '' if c in '0123456789-' else c, task)) for task in tasks]
return tasks
def get_job_postings(onetCode, state):
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'}
url = "https://www.onetonline.org/link/localjobs/" + onetCode + "?st=" + state
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
jobs = str(soup.get_text("tbody")).split('PostedtbodyTitle and CompanytbodyLocation')[1].split('Sources:')[0].split("tbody")
jobs = jobs[5:45]
starts = np.linspace(start=0, stop=len(jobs)-4,num= 10)
stops = np.linspace(start=3, stop=len(jobs)-1, num= 10)
jobpostings = []
for i in range(0,10):
jobpostings.append(str([' '.join(jobs[int(starts[i]):int(stops[i])])]).replace("['", '').replace("']", ''))
links = str(soup.find_all('a', href=True)).split("</small>")[1].split(', <a href="https://www.careeronestop.org/"')[0].split(' data-bs-toggle="modal" ')
linklist = []
for i in range(1, len(links)):
links[i] = "https://www.onetonline.org" + str(links[i]).split(' role="button">')[0].replace("href=", "")
linklist.append(links[i].replace('"', ''))
return jobpostings, linklist