Pathfinder / scrape_onet.py
celise88's picture
add ONET webscrape functionality for importance ratings
fc51d61
raw
history blame
11.8 kB
import requests
from bs4 import BeautifulSoup
from cleantext import clean
import pandas as pd
import numpy as np
onet = pd.read_csv('static/ONET_JobTitles.csv')
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'}
def remove_new_line(value):
return ''.join(value.splitlines())
def get_onet_code(jobtitle):
onetCode = onet.loc[onet['JobTitle'] == jobtitle, 'onetCode']
onetCode = onetCode.reindex().tolist()[0]
return onetCode
def get_onet_description(onetCode):
url = "https://www.onetonline.org/link/summary/" + onetCode
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
jobdescription = soup.p.get_text()
return jobdescription
def get_onet_tasks(onetCode):
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'}
url = "https://www.onetonline.org/link/result/" + onetCode + "?c=tk&n_tk=0&s_tk=IM&c_tk=0"
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "")
tasks = clean(tasks)
tasks = tasks.split('show all show top 10')[1]
tasks = tasks.split('occupations related to multiple tasks')[0]
tasks = remove_new_line(tasks).replace("related occupations", " ").replace("core", " - ").replace(" )importance category task", "").replace(" find ", "")
tasks = tasks.split(". ")
tasks = [''.join(map(lambda c: '' if c in '0123456789-' else c, task)) for task in tasks]
return tasks
def get_onet_ratings(onetCode):
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'}
activities_url = "https://www.onetonline.org/link/result/" + onetCode + "?c=wa&n_wa=0&s_wa=IM&c_wa=0"
context_url = "https://www.onetonline.org/link/result/" + onetCode + "?c=cx&n_cx=0&c_cx=0&s_cx=n"
response = requests.get(activities_url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "")
tasks = clean(tasks)
tasks = tasks.split('show all show top 10')[1]
tasks = tasks.split('back to top')[0]
tasks = remove_new_line(tasks).replace("related occupations", " ").replace("importance work activity", " ")
tasks = tasks.split(". ")
split_data = [item.split(" -- ")[0] for item in tasks]
num_desc = []
for i in range(len(tasks)):
temp = [','.join(item) for item in split_data][i].split(',')
num_desc.append([''.join([c for c in temp if c in '0123456789']), ''.join([c for c in temp if c not in '0123456789']).replace(' ) ', '')])
df = pd.DataFrame(num_desc, columns = ['Importance', 'Work Characteristic'])
df = df[df['Importance'] != '']
response = requests.get(context_url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "")
tasks = clean(tasks)
tasks = tasks.split('show all show top 10')[1]
tasks = tasks.split('back to top')[0]
tasks = remove_new_line(tasks).replace("related occupations", " ").replace("importance work activity", " ")
tasks = tasks.split("? ")
split_data = [item.split(" -- ")[0] for item in tasks]
num_desc = []
for i in range(len(tasks)):
temp = [','.join(item) for item in split_data][i].split(',')
num_desc.append([''.join([c for c in temp if c in '0123456789']), ''.join([c for c in temp if c not in '0123456789']).replace(')context work context', '')])
df2 = pd.DataFrame(num_desc, columns = ['Importance', 'Work Characteristic'])
df2 = df2[df2['Importance'] != '']
job_df = pd.concat([df, df2], axis = 0)
skills_url = "https://www.onetonline.org/link/result/" + onetCode + "?c=sk&n_sk=0&s_sk=IM&c_sk=0"
knowledge_url = "https://www.onetonline.org/link/result/" + onetCode + "?c=kn&n_kn=0&s_kn=IM&c_kn=0"
abilities_url = "https://www.onetonline.org/link/result/" + onetCode + "?c=ab&n_ab=0&s_ab=IM&c_ab=0"
interests_url = "https://www.onetonline.org/link/result/" + onetCode + "?c=in&c_in=0"
values_url = "https://www.onetonline.org/link/result/" + onetCode + "?c=wv&c_wv=0"
style_url = "https://www.onetonline.org/link/result/" + onetCode + "?c=ws&n_ws=0&c_ws=0"
response = requests.get(skills_url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "")
tasks = clean(tasks)
tasks = tasks.split('show all show top 10')[1]
tasks = tasks.split('back to top')[0]
tasks = remove_new_line(tasks).replace("related occupations", " ").replace(")importance skill", " ")
tasks = tasks.split(". ")
split_data = [item.split(" -- ")[0] for item in tasks]
num_desc = []
for i in range(len(tasks)):
temp = [','.join(item) for item in split_data][i].split(',')
num_desc.append([''.join([c for c in temp if c in '0123456789']), ''.join([c for c in temp if c not in '0123456789']).replace(')context work context', '')])
df3 = pd.DataFrame(num_desc, columns = ['Importance', 'Candidate Characteristic'])
df3 = df3[df3['Importance'] != '']
response = requests.get(knowledge_url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "")
tasks = clean(tasks)
tasks = tasks.split('show all show top 10')[1]
tasks = tasks.split('back to top')[0]
tasks = remove_new_line(tasks).replace("related occupations", " ").replace(")importance knowledge", " ")
tasks = tasks.split(". ")
split_data = [item.split(" -- ")[0] for item in tasks]
num_desc = []
for i in range(len(tasks)):
temp = [','.join(item) for item in split_data][i].split(',')
num_desc.append([''.join([c for c in temp if c in '0123456789']), ''.join([c for c in temp if c not in '0123456789']).replace(')context work context', '')])
df4 = pd.DataFrame(num_desc, columns = ['Importance', 'Candidate Characteristic'])
df4 = df4[df4['Importance'] != '']
response = requests.get(abilities_url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "")
tasks = clean(tasks)
tasks = tasks.split('show all show top 10')[1]
tasks = tasks.split('back to top')[0]
tasks = remove_new_line(tasks).replace("related occupations", " ").replace(")importance ability", " ")
tasks = tasks.split(". ")
split_data = [item.split(" -- ")[0] for item in tasks]
num_desc = []
for i in range(len(tasks)):
temp = [','.join(item) for item in split_data][i].split(',')
num_desc.append([''.join([c for c in temp if c in '0123456789']), ''.join([c for c in temp if c not in '0123456789']).replace(')context work context', '')])
df5 = pd.DataFrame(num_desc, columns = ['Importance', 'Candidate Characteristic'])
df5 = df5[df5['Importance'] != '']
response = requests.get(interests_url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "")
tasks = clean(tasks)
tasks = tasks.split("occupational interest interest")[1]#.replace('bright outlook', '').replace('updated 2023', '')
tasks = tasks.split('back to top')[0]
tasks = remove_new_line(tasks).replace("related occupations", " ").replace(")importance interest", " ")
tasks = tasks.split(". ")
split_data = [item.split(" -- ")[0] for item in tasks]
num_desc = []
for i in range(len(tasks)):
temp = [','.join(item) for item in split_data][i].split(',')
num_desc.append([''.join([c for c in temp if c in '0123456789']), ''.join([c for c in temp if c not in '0123456789']).replace(')context work context', '')])
df6 = pd.DataFrame(num_desc, columns = ['Importance', 'Candidate Characteristic'])
df6 = df6[df6['Importance'] != '']
response = requests.get(values_url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "")
tasks = clean(tasks)
tasks = tasks.split('extent work value')[1]
tasks = tasks.split('back to top')[0]
tasks = remove_new_line(tasks).replace("related occupations", " ").replace(")importance value", " ")
tasks = tasks.split(". ")
split_data = [item.split(" -- ")[0] for item in tasks]
num_desc = []
for i in range(len(tasks)):
temp = [','.join(item) for item in split_data][i].split(',')
num_desc.append([''.join([c for c in temp if c in '0123456789']), ''.join([c for c in temp if c not in '0123456789']).replace(')context work context', '')])
df7 = pd.DataFrame(num_desc, columns = ['Importance', 'Candidate Characteristic'])
df7 = df7[df7['Importance'] != '']
response = requests.get(style_url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
tasks = str(soup.get_text('reportsubdesc')).replace("reportsubdesc", " ").replace("ImportanceCategoryTask ", "")
tasks = clean(tasks)
tasks = tasks.split('show all show top 10')[1]
tasks = tasks.split('back to top')[0]
tasks = remove_new_line(tasks).replace("related occupations", " ").replace(")importance style", " ")
tasks = tasks.split(". ")
split_data = [item.split(" -- ")[0] for item in tasks]
num_desc = []
for i in range(len(tasks)):
temp = [','.join(item) for item in split_data][i].split(',')
num_desc.append([''.join([c for c in temp if c in '0123456789']), ''.join([c for c in temp if c not in '0123456789']).replace(')context work context', '')])
df8 = pd.DataFrame(num_desc, columns = ['Importance', 'Candidate Characteristic'])
df8 = df8[df8['Importance'] != '']
cand_df = pd.concat([df3, df4, df5, df6, df7, df8], axis = 0)
return [job_df, cand_df]
def get_job_postings(onetCode, state):
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Safari/605.1.15'}
url = "https://www.onetonline.org/link/localjobs/" + onetCode + "?st=" + state
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
jobs = str(soup.get_text("tbody")).split('PostedtbodyTitle and CompanytbodyLocation')[1].split('Sources:')[0].split("tbody")
jobs = jobs[5:45]
starts = np.linspace(start=0, stop=len(jobs)-4,num= 10)
stops = np.linspace(start=3, stop=len(jobs)-1, num= 10)
jobpostings = []
for i in range(0,10):
jobpostings.append(str([' '.join(jobs[int(starts[i]):int(stops[i])])]).replace("['", '').replace("']", ''))
links = str(soup.find_all('a', href=True)).split("</small>")[1].split(', <a href="https://www.careeronestop.org/"')[0].split(' data-bs-toggle="modal" ')
linklist = []
for i in range(1, len(links)):
links[i] = "https://www.onetonline.org" + str(links[i]).split(' role="button">')[0].replace("href=", "")
linklist.append(links[i].replace('"', ''))
return jobpostings, linklist