celise88 commited on
Commit
5d5d39d
·
1 Parent(s): 569668e

revise flow logic

Browse files
Files changed (2) hide show
  1. main.py +59 -13
  2. utils.py +0 -34
main.py CHANGED
@@ -7,10 +7,16 @@ import requests
7
  from bs4 import BeautifulSoup
8
  from cleantext import clean
9
  from docx import Document
 
 
 
10
  import numpy as np
 
 
 
11
  from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
12
- import utils
13
- from utils import coSkillEmbed, cosine, clean_my_text
14
 
15
  app = FastAPI()
16
  app.mount("/static", StaticFiles(directory='static'), name="static")
@@ -18,9 +24,11 @@ templates = Jinja2Templates(directory="templates/")
18
 
19
  onet = pd.read_csv('static/ONET_JobTitles.csv')
20
  simdat = pd.read_csv('static/cohere_embeddings.csv')
 
21
 
22
  model = AutoModelForSequenceClassification.from_pretrained('static/model_shards', low_cpu_mem_usage=True)
23
  tokenizer = AutoTokenizer.from_pretrained('static/tokenizer_shards', low_cpu_mem_usage=True)
 
24
 
25
  ### job information center ###
26
  # get
@@ -67,20 +75,28 @@ def render_job_info(request: Request, jobtitle: str = Form(enum=[x for x in onet
67
  ### job neighborhoods ###
68
  @app.get("/explore-job-neighborhoods/", response_class=HTMLResponse)
69
  async def render_job_neighborhoods(request: Request):
 
 
 
 
 
 
 
 
 
 
 
70
  return templates.TemplateResponse('job_neighborhoods.html', context={'request': request})
71
 
72
  ### find my match ###
73
  # get
74
- @app.get("/find-my-match/", response_class=HTMLResponse)
75
  async def match_page(request: Request):
76
  return templates.TemplateResponse('find_my_match.html', context={'request': request})
77
 
78
  # post
79
- @app.post('/find-my-match/', response_class=HTMLResponse)
80
  def get_resume(request: Request, resume: UploadFile = File(...)):
81
-
82
- classifier = pipeline('text-classification', model = model, tokenizer = tokenizer)
83
-
84
  path = f"static/{resume.filename}"
85
  with open(path, 'wb') as buffer:
86
  buffer.write(resume.file.read())
@@ -90,6 +106,22 @@ def get_resume(request: Request, resume: UploadFile = File(...)):
90
  text.append(para.text)
91
  resume = "\n".join(text)
92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  embeds = coSkillEmbed(resume)
94
  simResults = []
95
 
@@ -107,14 +139,28 @@ def get_resume(request: Request, resume: UploadFile = File(...)):
107
  for x in range(len(simResults)):
108
  simResults.iloc[x,1] = "{:0.2f}".format(simResults.iloc[x,1])
109
 
110
- cleantext = clean_my_text(resume)
111
- labels = []
112
- for i in range(len(cleantext)):
113
- classification = classifier(cleantext[i])[0]['label']
 
 
 
 
 
 
 
 
 
 
 
114
  if classification == 'LABEL_1':
115
  labels.append("Skill")
116
  else:
117
  labels.append("Not Skill")
118
- skills = dict(zip(cleantext, labels))
 
 
 
119
 
120
- return templates.TemplateResponse('find_my_match.html', context={'request': request, 'resume': resume, 'skills': skills, 'simResults': simResults})
 
7
  from bs4 import BeautifulSoup
8
  from cleantext import clean
9
  from docx import Document
10
+ import os
11
+ import cohere
12
+ import string
13
  import numpy as np
14
+ from numpy.linalg import norm
15
+ from nltk.tokenize import SpaceTokenizer
16
+ import nltk
17
  from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
18
+ from dotenv import load_dotenv
19
+ load_dotenv()
20
 
21
  app = FastAPI()
22
  app.mount("/static", StaticFiles(directory='static'), name="static")
 
24
 
25
  onet = pd.read_csv('static/ONET_JobTitles.csv')
26
  simdat = pd.read_csv('static/cohere_embeddings.csv')
27
+ coheredat = pd.read_csv("static/cohere_tSNE_dat.csv")
28
 
29
  model = AutoModelForSequenceClassification.from_pretrained('static/model_shards', low_cpu_mem_usage=True)
30
  tokenizer = AutoTokenizer.from_pretrained('static/tokenizer_shards', low_cpu_mem_usage=True)
31
+ classifier = pipeline('text-classification', model = model, tokenizer = tokenizer)
32
 
33
  ### job information center ###
34
  # get
 
75
  ### job neighborhoods ###
76
  @app.get("/explore-job-neighborhoods/", response_class=HTMLResponse)
77
  async def render_job_neighborhoods(request: Request):
78
+ def format_title(logo, title, subtitle, title_font_size = 28, subtitle_font_size=14):
79
+ logo = f'<a href="/" target="_self">{logo}</a>'
80
+ subtitle = f'<span style="font-size: {subtitle_font_size}px;">{subtitle}</span>'
81
+ title = f'<span style="font-size: {title_font_size}px;">{title}</span>'
82
+ return f'{logo}{title}<br>{subtitle}'
83
+
84
+ fig = px.scatter(coheredat, x = 'longitude', y = 'latitude', color = 'Category', hover_data = ['Category', 'Title'],
85
+ title=format_title("Pathfinder", " Job Neighborhoods: Explore the Map!", "(Generated using Co-here AI's LLM & ONET's Task Statements)"))
86
+ fig['layout'].update(height=1000, width=1500, font=dict(family='Courier New, monospace', color='black'))
87
+ fig.write_html('templates/job_neighborhoods.html')
88
+
89
  return templates.TemplateResponse('job_neighborhoods.html', context={'request': request})
90
 
91
  ### find my match ###
92
  # get
93
+ @app.get("/find-my-match", response_class=HTMLResponse)
94
  async def match_page(request: Request):
95
  return templates.TemplateResponse('find_my_match.html', context={'request': request})
96
 
97
  # post
98
+ @app.post('/find-my-match', response_class=HTMLResponse)
99
  def get_resume(request: Request, resume: UploadFile = File(...)):
 
 
 
100
  path = f"static/{resume.filename}"
101
  with open(path, 'wb') as buffer:
102
  buffer.write(resume.file.read())
 
106
  text.append(para.text)
107
  resume = "\n".join(text)
108
 
109
+ def clean_my_text(text):
110
+ clean_text = ' '.join(text.splitlines())
111
+ clean_text = clean_text.replace('-', " ").replace("/"," ")
112
+ clean_text = clean(clean_text.translate(str.maketrans('', '', string.punctuation)))
113
+ return clean_text
114
+
115
+ def coSkillEmbed(text):
116
+ co = cohere.Client(os.getenv("COHERE_TOKEN"))
117
+ response = co.embed(
118
+ model='large',
119
+ texts=[text])
120
+ return response.embeddings
121
+
122
+ def cosine(A, B):
123
+ return np.dot(A,B)/(norm(A)*norm(B))
124
+
125
  embeds = coSkillEmbed(resume)
126
  simResults = []
127
 
 
139
  for x in range(len(simResults)):
140
  simResults.iloc[x,1] = "{:0.2f}".format(simResults.iloc[x,1])
141
 
142
+ # EXTRACT SKILLS FROM RESUME
143
+ def skillNER(resume):
144
+ resume = clean_my_text(resume)
145
+ stops = set(nltk.corpus.stopwords.words('english'))
146
+ stops = stops.union({'eg', 'ie', 'etc', 'experience', 'experiences', 'experienced', 'experiencing', 'knowledge',
147
+ 'ability', 'abilities', 'skill', 'skills', 'skilled', 'including', 'includes', 'included', 'include'
148
+ 'education', 'follow', 'following', 'follows', 'followed', 'make', 'made', 'makes', 'making', 'maker',
149
+ 'available', 'large', 'larger', 'largescale', 'client', 'clients', 'responsible', 'x', 'many', 'team', 'teams'})
150
+ resume = [word for word in SpaceTokenizer().tokenize(resume) if word not in stops]
151
+ resume = [word for word in resume if ")" not in word]
152
+ resume = [word for word in resume if "(" not in word]
153
+
154
+ labels = []
155
+ for i in range(len(resume)):
156
+ classification = classifier(resume[i])[0]['label']
157
  if classification == 'LABEL_1':
158
  labels.append("Skill")
159
  else:
160
  labels.append("Not Skill")
161
+ labels_dict = dict(zip(resume, labels))
162
+ return labels_dict
163
+
164
+ skills=skillNER(resume)
165
 
166
+ return templates.TemplateResponse('find_my_match.html', context={'request': request, 'resume': resume, 'skills': skills, 'simResults': simResults})
utils.py DELETED
@@ -1,34 +0,0 @@
1
- from cleantext import clean
2
- import cohere
3
- import string
4
- import numpy as np
5
- from numpy.linalg import norm
6
- from nltk.tokenize import SpaceTokenizer
7
- import nltk
8
- import os
9
- from dotenv import load_dotenv
10
- load_dotenv()
11
-
12
- def coSkillEmbed(text):
13
- co = cohere.Client(os.getenv("COHERE_TOKEN"))
14
- response = co.embed(
15
- model='large',
16
- texts=[text])
17
- return response.embeddings
18
-
19
- def cosine(A, B):
20
- return np.dot(A,B)/(norm(A)*norm(B))
21
-
22
- def clean_my_text(resume):
23
- clean_text = ' '.join(resume.splitlines())
24
- clean_text = clean_text.replace('-', " ").replace("/"," ")
25
- clean_text = clean(clean_text.translate(str.maketrans('', '', string.punctuation)))
26
- stops = set(nltk.corpus.stopwords.words('english'))
27
- stops = stops.union({'eg', 'ie', 'etc', 'experience', 'experiences', 'experienced', 'experiencing', 'knowledge',
28
- 'ability', 'abilities', 'skill', 'skills', 'skilled', 'including', 'includes', 'included', 'include'
29
- 'education', 'follow', 'following', 'follows', 'followed', 'make', 'made', 'makes', 'making', 'maker',
30
- 'available', 'large', 'larger', 'largescale', 'client', 'clients', 'responsible', 'x', 'many', 'team', 'teams'})
31
- resume = [word for word in SpaceTokenizer().tokenize(resume) if word not in stops]
32
- resume = [word for word in resume if ")" not in word]
33
- resume = [word for word in resume if "(" not in word]
34
- return resume