File size: 8,492 Bytes
fe94f9f 3bf7d18 c805ab5 fe94f9f 3bf7d18 3775986 3bf7d18 b29bcde 3bf7d18 a5eb38b 3bf7d18 b29bcde 3bf7d18 a5eb38b 3bf7d18 0854b50 3bf7d18 ca1108c 3bf7d18 19e554d ca1108c 3bf7d18 ca1108c 3bf7d18 ca1108c 3bf7d18 0854b50 3775986 0854b50 3775986 3bf7d18 3775986 3bf7d18 0854b50 3bf7d18 fe94f9f 3bf7d18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import gradio as gr
import h5py
import mrcfile
import numpy as np
from PIL import Image
from omegaconf import DictConfig
import torch
from pathlib import Path
from torchvision.transforms import functional as F
import torchvision.transforms.v2 as v2
import spaces
from draco.configuration import CfgNode
from draco.model import (
build_model,
load_pretrained
)
example_files = {
"EMPIAR-10078": "example/empiar-10078-00-000093-full_patch_aligned.h5",
"EMPIAR-10154": "example/empiar-10154-00-000130-full_patch_aligned.h5",
"EMPIAR-10185": "example/empiar-10185-00-000032-full_patch_aligned.h5",
"EMPIAR-10200": "example/empiar-10200-00-000139-full_patch_aligned.h5",
"EMPIAR-10216": "example/empiar-10216-00-000036-full_patch_aligned.h5"
}
class DRACODenoiser(object):
def __init__(self,
cfg: DictConfig,
ckpt_path: Path,
) -> None:
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.transform = self.build_transform()
self.model = build_model(cfg).to(self.device).eval()
self.model = load_pretrained(self.model, ckpt_path, self.device)
self.patch_size = cfg.MODEL.PATCH_SIZE
def patchify(self, image: torch.Tensor) -> torch.Tensor:
B, C, H, W = image.shape
P = self.patch_size
if H % P != 0 or W % P != 0:
image = torch.nn.functional.pad(image, (0, (P - W % P) % P, 0, (P - H % P) % P), mode='constant', value=0)
patches = image.unfold(2, P, P).unfold(3, P, P)
patches = patches.permute(0, 2, 3, 4, 5, 1)
patches = patches.reshape(B, -1, P * P * C)
return patches
def unpatchify(self, patches: torch.Tensor, H: int, W: int) -> torch.Tensor:
B = patches.shape[0]
P = self.patch_size
images = patches.reshape(B, (H + P - 1) // P, (W + P - 1) // P, P, P, -1)
images = images.permute(0, 5, 1, 3, 2, 4)
images = images.reshape(B, -1, (H + P - 1) // P * P, (W + P - 1) // P * P)
images = images[..., :H, :W]
return images
@classmethod
def build_transform(cls) -> v2.Compose:
return v2.Compose([
v2.ToImage(),
v2.ToDtype(torch.float32, scale=True)
])
@spaces.GPU
def inference(self, image: Image.Image) -> None:
W, H = image.size
x = self.transform(image).unsqueeze(0).to(self.device)
y = self.model(x)
x = self.patchify(x).detach().cpu().numpy()
denoised = self.unpatchify(y, H, W).squeeze(0).permute(1, 2, 0).detach().cpu().numpy()
return denoised
# Model Initialization
cfg = CfgNode.load_yaml_with_base(Path("draco.yaml"))
CfgNode.merge_with_dotlist(cfg, [])
ckpt_path = Path("denoise.ckpt")
denoiser = DRACODenoiser(cfg, ckpt_path)
def Auto_contrast(image, t_mean=150.0/255.0, t_sd=40.0/255.0) -> np.ndarray:
image = (image - image.min()) / (image.max() - image.min())
mean = image.mean()
std = image.std()
f = std / t_sd
black = mean - t_mean * f
white = mean + (1 - t_mean) * f
new_image = np.clip(image, black, white)
new_image = (new_image - black) / (white - black)
return new_image
def load_data(file_path) -> np.ndarray:
if file_path.endswith('.h5'):
with h5py.File(file_path, "r") as f:
full_micrograph = f["micrograph"] if "micrograph" in f else f["data"]
full_mean = full_micrograph.attrs["mean"] if "mean" in full_micrograph.attrs else full_micrograph[:].astype(np.float32).mean()
full_std = full_micrograph.attrs["std"] if "std" in full_micrograph.attrs else full_micrograph[:].astype(np.float32).std()
data = full_micrograph[:].astype(np.float32)
elif file_path.endswith('.mrc'):
with mrcfile.open(file_path, "r") as f:
data = f.data[:].astype(np.float32)
full_mean = data.mean()
full_std = data.std()
else:
raise ValueError("Unsupported file format. Please upload a .mrc or .h5 file.")
data = (data - full_mean) / full_std
return data
def display_crop(data, x_offset, y_offset, auto_contrast) -> Image:
if data is None:
return None
crop = data[y_offset:y_offset + 1024, x_offset:x_offset + 1024]
original_image_normalized = Auto_contrast(crop) if auto_contrast else (crop - crop.min()) / (crop.max() - crop.min())
input_image = Image.fromarray((original_image_normalized * 255).astype(np.uint8))
return input_image
@spaces.GPU
def process_and_denoise(data, x_offset, y_offset, auto_contrast) -> Image:
if data is None:
return None
crop = data[y_offset:y_offset + 1024, x_offset:x_offset + 1024]
denoised_data = denoiser.inference(Image.fromarray(crop))
denoised_data = denoised_data.squeeze()
denoised_image_normalized = Auto_contrast(denoised_data) if auto_contrast else (denoised_data - denoised_data.min()) / (denoised_data.max() - denoised_data.min())
denoised_image = Image.fromarray((denoised_image_normalized * 255).astype(np.uint8))
return denoised_image
def clear_images() -> tuple:
return None, None, None, gr.update(value=0,maximum=1024), gr.update(value=0,maximum=1024)
with gr.Blocks(css="""
.custom-size {
width: 735px;
height: 127px;
}
""") as demo:
gr.Markdown(
'''
<div style="text-align: center;">
<h1>Draco Denoising Demo 🙉</h1>
<p style="font-size:16px;">Upload a raw micrograph or select a example to visualize the original and denoised results</p>
<p style="font-size:16px;">Our denoising model supports a bin-1 micrograph (ends with .mrc or .h5). To achieve the optimal performance, the input should be <strong>motion corrected</strong> before passing to model.</p>
</div>
'''
)
with gr.Row():
with gr.Column():
example_selector = gr.Radio(label="Choose an example Raw Micrograph File", choices=list(example_files.keys()))
file_input = gr.File(label="Or upload a Micrograph File in .h5 or .mrc format")
with gr.Column():
auto_contrast = gr.Checkbox(label="Enable Auto Contrast", value=False, elem_classes=["custom-size"])
x_slider = gr.Slider(0, 1024, step=10, label="X Offset", elem_classes=["custom-size"])
y_slider = gr.Slider(0, 1024, step=10, label="Y Offset", elem_classes=["custom-size"])
with gr.Row():
denoise_button = gr.Button("Denoise")
clear_button = gr.Button("Clear")
with gr.Row():
with gr.Column():
original_image = gr.Image(type="pil", label="Original Image")
with gr.Column():
denoised_image = gr.Image(type="pil", label="Denoised Image")
active_data = gr.State()
def load_image_and_update_sliders(file_path) -> tuple:
data = load_data(file_path)
h, w = data.shape[:2]
original_image = display_crop(data, 0, 0, auto_contrast)
return data, original_image, None, gr.update(value=0,maximum=w-1024), gr.update(value=0,maximum=h-1024)
example_selector.change(
lambda choice:load_image_and_update_sliders(example_files[choice]),
inputs=example_selector,
outputs=[active_data, original_image, denoised_image, x_slider, y_slider]
)
file_input.clear(
clear_images,
inputs=None,
outputs=[original_image, denoised_image, active_data, x_slider, y_slider]
)
file_input.change(
lambda file: load_image_and_update_sliders(file.name) if file else (None, None, None, gr.update(maximum=1024), gr.update(maximum=1024)),
inputs=file_input,
outputs=[active_data, original_image, denoised_image, x_slider, y_slider]
)
x_slider.change(
display_crop,
inputs=[active_data, x_slider, y_slider, auto_contrast],
outputs=original_image
)
y_slider.change(
display_crop,
inputs=[active_data, x_slider, y_slider, auto_contrast],
outputs=original_image
)
denoise_button.click(
process_and_denoise,
inputs=[active_data, x_slider, y_slider, auto_contrast],
outputs=denoised_image
)
clear_button.click(clear_images, inputs=None, outputs=[original_image, denoised_image, active_data, x_slider, y_slider])
demo.launch()
|