Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
import pandas as pd | |
from pycaret.classification import load_model, predict_model | |
from fastapi import FastAPI | |
import uvicorn | |
from pydantic import create_model | |
# Create the app | |
app = FastAPI() | |
# Load trained Pipeline | |
model = load_model("lr_api") | |
# Create input/output pydantic models | |
input_model = create_model("lr_api_input", **{'Id': 216, 'WeekofPurchase': 265, 'StoreID': 7, 'PriceCH': 1.8600000143051147, 'PriceMM': 2.130000114440918, 'DiscCH': 0.3700000047683716, 'DiscMM': 0.0, 'SpecialCH': 1, 'SpecialMM': 0, 'LoyalCH': 0.974931001663208, 'SalePriceMM': 2.130000114440918, 'SalePriceCH': 1.4900000095367432, 'PriceDiff': 0.6399999856948853, 'Store7': 'Yes', 'PctDiscMM': 0.0, 'PctDiscCH': 0.19892500340938568, 'ListPriceDiff': 0.27000001072883606, 'STORE': 0}) | |
output_model = create_model("lr_api_output", prediction='CH') | |
# Define predict function | |
def predict(data: input_model): | |
data = pd.DataFrame([data.dict()]) | |
predictions = predict_model(model, data=data) | |
return {"prediction": predictions["prediction_label"].iloc[0]} | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |