# app.py import cv2 import gradio as gr from ultralytics import YOLO # ── Config ───────────────────────────────────────────── MODEL_PATH = "yolov8n.pt" # peso pre-entrenado (COCO) CONF_THRES = 0.3 # confianza mínima LINE_RATIO = 0.5 # línea virtual: mitad de la altura # ─────────────────────────────────────────────────────── model = YOLO(MODEL_PATH) # Estado global memory = {} # {track_id: previous_cy} in_count = 0 out_count = 0 def count_people(frame): global memory, in_count, out_count h, w = frame.shape[:2] line_y = int(h * LINE_RATIO) # Detección + tracking ByteTrack interno results = model.track(frame, classes=[0], conf=CONF_THRES, persist=True, verbose=False) # solo clase “person” annotated = frame.copy() cv2.line(annotated, (0, line_y), (w, line_y), (0, 255, 255), 2) if results: for box in results[0].boxes: x1, y1, x2, y2 = map(int, box.xyxy[0]) cx, cy = int((x1 + x2) / 2), int((y1 + y2) / 2) tid = int(box.id[0]) if box.id is not None else -1 # Dibujo cv2.rectangle(annotated, (x1, y1), (x2, y2), (0, 255, 0), 1) cv2.circle(annotated, (cx, cy), 3, (0, 0, 255), -1) cv2.putText(annotated, str(tid), (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1) # Lógica de cruce prev_cy = memory.get(tid, cy) if prev_cy < line_y <= cy: # entra in_count += 1 elif prev_cy > line_y >= cy: # sale out_count += 1 memory[tid] = cy # Overlay de números total = in_count - out_count label = f"In: {in_count} | Out: {out_count} | Ocupación: {total}" cv2.putText(annotated, label, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2) return annotated, label demo = gr.Interface( fn=count_people, inputs=gr.Image(source="webcam", streaming=True), outputs=[gr.Image(), gr.Text()], title="Contador de personas (entrada única)", live=True, ) if __name__ == "__main__": demo.launch()