cesar commited on
Commit
a5312a2
1 Parent(s): 05cb91d

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -100
app.py DELETED
@@ -1,100 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """Deploy Barcelo demo.ipynb
3
-
4
- Automatically generated by Colaboratory.
5
-
6
- Original file is located at
7
- https://colab.research.google.com/drive/1FxaL8DcYgvjPrWfWruSA5hvk3J81zLY9
8
-
9
- ![ ](https://www.vicentelopez.gov.ar/assets/images/logo-mvl.png)
10
-
11
- # Modelo
12
-
13
- YOLO es una familia de modelos de detecci贸n de objetos a escala compuesta entrenados en COCO dataset, e incluye una funcionalidad simple para Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite.
14
-
15
-
16
- ## Gradio Inferencia
17
-
18
- ![](https://i.ibb.co/982NS6m/header.png)
19
-
20
- Este Notebook se acelera opcionalmente con un entorno de ejecuci贸n de GPU
21
-
22
-
23
- ----------------------------------------------------------------------
24
-
25
- YOLOv5 Gradio demo
26
-
27
- *Author: Ultralytics LLC and Gradio*
28
-
29
- # C贸digo
30
- """
31
-
32
- #!pip install -qr https://raw.githubusercontent.com/ultralytics/yolov5/master/requirements.txt gradio # install dependencies
33
-
34
- import gradio as gr
35
- import torch
36
- from PIL import Image
37
-
38
- # Images
39
- torch.hub.download_url_to_file('https://i.pinimg.com/originals/7f/5e/96/7f5e9657c08aae4bcd8bc8b0dcff720e.jpg', 'ejemplo1.jpg')
40
- torch.hub.download_url_to_file('https://i.pinimg.com/originals/c2/ce/e0/c2cee05624d5477ffcf2d34ca77b47d1.jpg', 'ejemplo2.jpg')
41
-
42
- # Model
43
- #model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # force_reload=True to update
44
-
45
- #model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt') # local model o google colab
46
- model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', force_reload=True, autoshape=True) # local model o google colab
47
- #model = torch.hub.load('path/to/yolov5', 'custom', path='/content/yolov56.pt', source='local') # local repo
48
-
49
-
50
- def yolo(size, iou, conf, im):
51
- '''Wrapper fn for gradio'''
52
- g = (int(size) / max(im.size)) # gain
53
- im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize
54
-
55
- model.iou = iou
56
-
57
- model.conf = conf
58
-
59
-
60
- results2 = model(im) # inference
61
-
62
- results2.render() # updates results.imgs with boxes and labels
63
- return Image.fromarray(results2.ims[0])
64
-
65
- #------------ Interface-------------
66
-
67
-
68
-
69
- in1 = gr.inputs.Radio(['640', '1280'], label="Tama帽o de la imagen", default='640', type='value')
70
- in2 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.45, label='NMS IoU threshold')
71
- in3 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.50, label='Umbral o threshold')
72
- in4 = gr.inputs.Image(type='pil', label="Original Image")
73
-
74
- out2 = gr.outputs.Image(type="pil", label="YOLOv5")
75
- #-------------- Text-----
76
- title = 'Trampas Barcel贸'
77
- description = """
78
- <p>
79
- <center>
80
- Sistemas de Desarrollado por Subsecretar铆a de Innovaci贸n del Municipio de Vicente L贸pez. Advertencia solo usar fotos provenientes de las trampas Barcel贸, no de celular o foto de internet.
81
- <img src="https://www.vicentelopez.gov.ar/assets/images/logo-mvl.png" alt="logo" width="250"/>
82
- </center>
83
- </p>
84
- """
85
- article ="<p style='text-align: center'><a href='https://docs.google.com/presentation/d/1T5CdcLSzgRe8cQpoi_sPB4U170551NGOrZNykcJD0xU/edit?usp=sharing' target='_blank'>Para mas info, clik para ir al white paper</a></p><p style='text-align: center'><a href='https://drive.google.com/drive/folders/1owACN3HGIMo4zm2GQ_jf-OhGNeBVRS7l?usp=sharing ' target='_blank'>Google Colab Demo</a></p><p style='text-align: center'><a href='https://github.com/Municipalidad-de-Vicente-Lopez/Trampa_Barcelo' target='_blank'>Repo Github</a></p></center></p>"
86
-
87
- examples = [['640',0.45, 0.75,'ejemplo1.jpg'], ['640',0.45, 0.75,'ejemplo2.jpg']]
88
-
89
- iface = gr.Interface(yolo, inputs=[in1, in2, in3, in4], outputs=out2, title=title, description=description, article=article, examples=examples,theme="huggingface", analytics_enabled=False).launch(
90
- debug=True)
91
-
92
- iface.launch()
93
-
94
- """For YOLOv5 PyTorch Hub inference with **PIL**, **OpenCV**, **Numpy** or **PyTorch** inputs please see the full [YOLOv5 PyTorch Hub Tutorial](https://github.com/ultralytics/yolov5/issues/36).
95
-
96
-
97
- ## Citation
98
-
99
- [![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686)
100
- """