# This is a small and fast sklearn model, so the run-gradio script trains a model and deploys it import pandas as pd import numpy as np import sklearn import gradio as gr from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score # Cargar los datos data = pd.read_csv('https://raw.githubusercontent.com/gradio-app/titanic/master/train.csv') data.head() # Función para binning de edades def encode_ages(df): df.loc[:, 'Age'] = df['Age'].fillna(-0.5) bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120) categories = pd.cut(df['Age'], bins, labels=False) df.loc[:, 'Age'] = categories return df # Función para binning de tarifas def encode_fares(df): df.loc[:, 'Fare'] = df['Fare'].fillna(-0.5) bins = (-1, 0, 8, 15, 31, 1000) categories = pd.cut(df['Fare'], bins, labels=False) df.loc[:, 'Fare'] = categories return df # Función para codificar el sexo def encode_sex(df): mapping = {"male": 0, "female": 1} df.loc[:, 'Sex'] = df['Sex'].map(mapping) return df # Función para transformar todas las características def transform_features(df): df = encode_ages(df) df = encode_fares(df) df = encode_sex(df) return df # Selección de columnas y transformación de datos train = data[['PassengerId', 'Fare', 'Age', 'Sex', 'Survived']] train = transform_features(train) train.head() # Separación en características (X) y etiqueta (y) X_all = train.drop(['Survived', 'PassengerId'], axis=1) y_all = train['Survived'] # División en conjunto de entrenamiento y prueba num_test = 0.20 X_train, X_test, y_train, y_test = train_test_split(X_all, y_all, test_size=num_test, random_state=23) # Entrenamiento del modelo clf = RandomForestClassifier() clf.fit(X_train, y_train) predictions = clf.predict(X_test) # Función de predicción para Gradio def predict_survival(sex, age, fare): df = pd.DataFrame.from_dict({'Sex': [sex], 'Age': [age], 'Fare': [fare]}) df = encode_sex(df) df = encode_fares(df) df = encode_ages(df) pred = clf.predict_proba(df)[0] return {'Perishes': float(pred[0]), 'Survives': float(pred[1])} # Definir la interfaz de Gradio sex = gr.Radio(['female', 'male'], label="Sex", value="male") age = gr.Slider(minimum=0, maximum=100, value=22, label="Age") fare = gr.Slider(minimum=0, maximum=200, value=100, label="Fare (british pounds)") gr.Interface(predict_survival, [sex, age, fare], "label", live=True, thumbnail="https://raw.githubusercontent.com/gradio-app/hub-titanic/master/thumbnail.png", analytics_enabled=False, theme="soft", title="Demo Titanic", description="¿Cuál es la probabilidad de que un pasajero sobreviva?").launch();