import os import json import requests import gradio as gr from gradio import inputs, outputs ENDPOINT = ( "https://api-inference.huggingface.co/models/ceshine/t5-paraphrase-quora-paws" ) def paraphrase(source_text): res = requests.post( ENDPOINT, headers={"Authorization": f"Bearer {os.environ['TOKEN']}"}, data=json.dumps( { "inputs": source_text, "parameters": { # "do_sample": True, "num_beams": 10, "top_k": 5, "repetition_penalty": 2.0, "temperature": 1.5, "num_return_sequences": 10, "max_length": 200, }, } ), ) if not (res.status_code == 200): raise ValueError( "Could not complete request to HuggingFace API, Error {}".format( res.status_code ) ) results = res.json() print(results) outputs = [ x["generated_text"] for x in results if x["generated_text"].lower() != source_text.lower().strip() ][:3] text = "" for i, output in enumerate(outputs): text += f"{i+1}: {output}\n\n" return text interface = gr.Interface( fn=paraphrase, inputs=inputs.Textbox(label="Input"), outputs=outputs.Textbox(label="Generated text:"), title="T5 Sentence Paraphraser", description="A paraphrasing model trained on PAWS and Quora datasets", examples=[ ["I bought a ticket from London to New York."], ["Weh Seun spends 14 hours a week doing housework."], ], ) interface.launch(enable_queue=True)