Spaces:
Running
Running
File size: 3,493 Bytes
2e6ae7a 252db8d a0e5a60 a2a2339 990bbcc 2e6ae7a 990bbcc 2e6ae7a a0e5a60 252db8d a0e5a60 990bbcc 81be3e1 990bbcc a0e5a60 990bbcc a0e5a60 a2a2339 990bbcc 81be3e1 2310265 81be3e1 2e6ae7a 990bbcc a0e5a60 2e6ae7a a0e5a60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import { Inter } from "next/font/google";
import Link from "next/link";
import CodeMirror from "@uiw/react-codemirror";
import { inlineSuggestion } from "codemirror-extension-inline-suggestion";
import { EditorState } from "@codemirror/state";
import { EditorView } from "@codemirror/view";
import * as webllm from "@mlc-ai/web-llm";
import { useState, useEffect } from "react";
const inter = Inter({ subsets: ["latin"] });
export default function Home() {
const [engine, setEngine] = useState<webllm.MLCEngineInterface | null>(null);
const [isLoading, setIsLoading] = useState(false);
const [loadingStatus, setLoadingStatus] = useState('');
useEffect(() => {
async function loadWebLLM() {
setIsLoading(true);
const initProgressCallback = (report: webllm.InitProgressReport) => {
setLoadingStatus(report.text);
};
const selectedModel = "SmolLM-360M-q016-MLC";
const appConfig: webllm.AppConfig = {
model_list: [{
model: `https://huggingface.co/cfahlgren1/SmolLM-360M-q016-MLC`,
model_id: 'SmolLM-360M-q016-MLC',
model_lib: `${webllm.modelLibURLPrefix}${webllm.modelVersion}/SmolLM-360M-Instruct-q0f16-ctx2k_cs1k-webgpu.wasm`,
overrides: { context_window_size: 2048 },
}],
};
try {
const newEngine = await webllm.CreateMLCEngine(selectedModel, {
appConfig,
initProgressCallback,
logLevel: "INFO",
});
setEngine(newEngine);
} catch (err) {
console.error(`Failed to load the model: ${(err as Error).message}`);
} finally {
setIsLoading(false);
}
}
loadWebLLM();
}, []);
const generateCompletion = async (content: string) => {
if (!engine) return;
try {
const response = await engine.completions.create({
prompt: content,
max_tokens: 15,
});
return response.choices[0].text || "";
} catch (err) {
console.error(`Error: ${(err as Error).message}`);
return "";
}
};
return (
<div>
<h1 className="text-6xl text-slate-800 mt-28 font-bold font-sans text-center">
Smol<span className="text-red-600">Pilot</span>
</h1>
<p className="text-slate-800 italic text-sm mb-4 mt-2 text-center">
What if you had a <Link className="text-black underline font-semibold" href="https://huggingface.co/HuggingFaceTB/SmolLM-360M" target="_blank">360M parameter model</Link> in your pocket?
</p>
{isLoading ? (
<p className="text-center mt-4">{loadingStatus}</p>
) : (
<div className="flex flex-col items-center mt-10">
<div className="w-full border-2 border-slate-200 shadow-2xl rounded-lg max-w-4xl">
<CodeMirror
placeholder="Type anything to suggest a word"
height="400px"
extensions={[
inlineSuggestion({
fetchFn: async (state: EditorState) => {
const content = state.doc.toString();
return (await generateCompletion(content)) || "";
},
delay: 500
}),
EditorView.lineWrapping
]}
/>
</div>
<p className="text-slate-800 italic text-sm mt-2 text-center">
Keep in mind, this is a 360M parameter model, it's not Llama 3.1 405B 🤗
</p>
</div>
)}
</div>
);
} |