Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import BartForConditionalGeneration, BartTokenizer | |
from youtube_transcript_api import YouTubeTranscriptApi | |
# Load BART model and tokenizer | |
model_name = 'facebook/bart-large-cnn' | |
tokenizer = BartTokenizer.from_pretrained(model_name) | |
model = BartForConditionalGeneration.from_pretrained(model_name) | |
def get_transcript(url): | |
try: | |
video_id = url.split('=')[1] | |
transcript_list = YouTubeTranscriptApi.get_transcript(video_id) | |
transcript_text = "" | |
for item in transcript_list: | |
transcript_text += item['text'] + "\n" | |
return transcript_text | |
except Exception as e: | |
return "Error fetching transcript: " + str(e) | |
def summarize_transcript(transcript): | |
input_ids = tokenizer.encode("summarize: " + transcript, return_tensors="pt", max_length=1024, truncation=True) | |
summary_ids = model.generate(input_ids, num_beams=4, min_length=30, max_length=200, early_stopping=True) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return summary | |
def summarize_video_url(video_url): | |
transcript = get_transcript(video_url) | |
if not transcript: | |
return "Error fetching transcript." | |
else: | |
summary = summarize_transcript(transcript) | |
return summary | |
input = gr.inputs.Textbox(label="Enter YouTube Video URL") | |
output = gr.outputs.Textbox(label="Summary") | |
title = "YouTube Video Transcription Summarizer" | |
description = "Enter a YouTube Video URL to get a summary of its transcript." | |
iface = gr.Interface(fn=summarize_video_url, inputs=input, outputs=output, title=title, description=description) | |
iface.launch(share=True) | |